精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|x+a|-|x-1|.
(Ⅰ)当a=-2时,求不等式 的解集;
(Ⅱ)若f(x)≥2有解,求实数a的取值范围.

【答案】解:(Ⅰ)当a=-2时,

当x≤1时,由 ,成立,∴x≤1;

当1<x≤2时,由 解得 ,∴

当x>2时,由 ,不成立,∴无解.

综上, 的解集为

(Ⅱ)∵f(x)=|x+a|-|x-1|≥2有解,

∴f(x)max≥2.

∵|x+a|-|x-1|≤(x+a)-(x-1)=|a+1|,

∴|a+1|≥2,∴a≥1或a≤-3


【解析】(Ⅰ)先将所给函数的绝对值去掉,再分段讨论求得不等式的解集;(Ⅱ)根据函数的最值及基本不等式求得a的取值范围.
【考点精析】解答此题的关键在于理解基本不等式的相关知识,掌握基本不等式:,(当且仅当时取到等号);变形公式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 +y2=1(a>1),过直线l:x=2上一点P作椭圆的切线,切点为A,当P点在x轴上时,切线PA的斜率为± . (Ⅰ)求椭圆的方程;
(Ⅱ)设O为坐标原点,求△POA面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2axbg(x)=ex(cxd),若曲线yf(x)和曲线yg(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.
(1)求abcd的值;
(2)若x≥-2时,恒有f(x)≤kg(x),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fn(x)= (n∈N*),关于此函数的说法正确的序号是
①fn(x)(n∈N*)为周期函数;②fn(x)(n∈N*)有对称轴;③( ,0)为fn(x)(n∈N*)的对称中心:④|fn(x)|≤n(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=xlnx-a(x-1)2-x,g(x)=lnx-2a(x-1),其中常数a∈R.
(Ⅰ)讨论g(x)的单调性;
(Ⅱ)当a>0时,若f(x)有两个零点x1 , x2(x1<x2),求证:在区间(1,+∞)上存在f(x)的极值点x0 , 使得x0lnx0+lnx0-2x0>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fn(x)= (n∈N*),关于此函数的说法正确的序号是
①fn(x)(n∈N*)为周期函数;②fn(x)(n∈N*)有对称轴;③( ,0)为fn(x)(n∈N*)的对称中心:④|fn(x)|≤n(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在2015﹣2016赛季CBA联赛中,某队甲、乙两名球员在前10场比赛中投篮命中情况统计如下表(注:表中分数 ,N表示投篮次数,n表示命中次数),假设各场比赛相互独立.

1

2

3

4

5

6

7

8

9

10

根据统计表的信息:
(1)从上述比赛中等可能随机选择一场,求甲球员在该场比赛中投篮命中率大于0.5的概率;
(2)试估计甲、乙两名运动员在下一场比赛中恰有一人命中率超过0.5的概率;
(3)在接下来的3场比赛中,用X表示这3场比赛中乙球员命中率超过0.5的场次,试写出X的分布列,并求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知长方形 ,以 的中点 为原点,建立如图所示的平面直角坐标系 .

(1)求以 为焦点,且过 两点的椭圆的标准方程;
(2)在(1)的条件下,过点 作直线 与椭圆交于不同的两点 ,设 ,点 坐标为 ,若 ,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数是奇函数.

(1)求的值;

(2)判断函数的单调性并证明;

(2)若关于的不等式有解,求实数的取值范围.

查看答案和解析>>

同步练习册答案