【题目】如图,四棱锥中,,,,,且.
(1)求证:平面平面;
(2)求点到平面的距离.
【答案】(1)证明见解析(2)
【解析】
(1)由线面垂直的判定定理证明平面,由线面垂直的性质定理可得,由线面垂直的判定定理得平面,再由面面垂直的判定定理证明平面平面即可.
(2)由,利用等体积法,即可求出点到平面的距离.
(1)解:取、的中点分别为、,连结,,,
因为,,
所以四边形为梯形,
又、为、的中点,
所以为梯形的中位线,
所以,
又,
所以,
因为,为的中点
所以,
又,平面,平面,
所以平面,
又平面,
故,
因为,为中点,
所以,
又,不平行,必相交于某一点,且,都在平面上,
所以平面,
又平面,
则平面平面.
(2)由(1)及题意知,为三棱锥的高,
,,,
故,
,
而,
设点到平面的距离为,
由等体积法知:,
解得,
所以点到平面的距离为.
科目:高中数学 来源: 题型:
【题目】已知△ABC的两个顶点A,B的坐标分别为(,0),(,0),圆E是△ABC的内切圆,在边AC,BC,AB上的切点分别为P,Q,R,|CP|=2,动点C的轨迹为曲线G.
(1)求曲线G的方程;
(2)设直线l与曲线G交于M,N两点,点D在曲线G上,是坐标原点,判断四边形OMDN的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线与椭圆交于不同的两点,.
(1)若线段的中点为,求直线的方程;
(2)若的斜率为,且过椭圆的左焦点,的垂直平分线与轴交于点,求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,、为椭圆的左、右焦点,为椭圆上一点,且.
(1)求椭圆的标准方程;
(2)设直线,过点的直线交椭圆于、两点,线段的垂直平分线分别交直线、直线于、两点,当最小时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱中,侧面,已知,,,点是棱的中点.
(1)求证:平面;
(2)求二面角的余弦值;
(3)在棱上是否存在一点,使得与平面所成角的正弦值为,若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线L:()的焦点为F,过点的动直线l与抛物线L交于A,B两点,直线交抛物线L于另一点C,直线的最小值为4.
(1)求椭圆C的方程;
(2)若过点A作y轴的垂线m,则x轴上是否存在一点,使得直线PB与直线m的交点恒在一条定直线上?若存在,求该点的坐标及该定直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本,检测一项质量指标值,若该项质量指标值落在内,则为合格品,否则为不合格品. 表1是甲套设备的样本的频数分布表,图1是乙套设备的样本的频率分布直方图.
表1:甲套设备的样本的频数分布表
质量指标值 | [95,100) | [100,105) | [105,110) | [110,115) | [115,120) | [120,125] |
频数 | 1 | 5 | 18 | 19 | 6 | 1 |
图1:乙套设备的样本的频率分布直方图
(Ⅰ)将频率视为概率. 若乙套设备生产了5000件产品,则其中的不合格品约有多少件;
(Ⅱ)填写下面列联表,并根据列联表判断是否有90%的把握认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关;
甲套设备 | 乙套设备 | 合计 | |
合格品 | |||
不合格品 | |||
合计 |
(Ⅲ)根据表1和图1,对两套设备的优劣进行比较.
附:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4 — 4:坐标系与参数方程
在直角坐标系中,直线的参数方程为(为参数),以原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为().
(1)分别写出直线的普通方程与曲线的直角坐标方程;
(2)已知点,直线与曲线相交于两点,若,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com