精英家教网 > 高中数学 > 题目详情
17.已知数列{an}满足:a1=3,an=an-1+2n-1(n≥2,n∈N*).
(Ⅰ) 求数列{an}的通项;
(Ⅱ) 若bn=n(an-1)(n∈N*),求数列{bn}的前n项和Sn
(Ⅲ)设cn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,Tn=2c1+22c2+…+2ncn(n∈N*),求证:Tn<$\frac{1}{3}$(n∈N*).

分析 (I)利用“累加求和”即可得出;
(Ⅱ)由(Ⅰ)及题设知:${b_n}=n×{2^n}$,利用“错位相减法”与等比数列的前n项和公式即可得出;
(III)利用“裂项求和”即可得出.

解答 (I)解:∵${a_n}={a_{n-1}}+{2^{n-1}}\;\;(n≥2\;,\;n∈{N^*})$,
∴当n≥2时,an=a1+(a2-a1)+(a3-a2)+…+(an-1-an-2)+(an-an-1
=$3+{2^1}+{2^2}+…+{2^{n-2}}+{2^{n-1}}=3+\frac{{2({2^{n-1}}-1)}}{2-1}={2^n}+1$;
又${a_1}=3={2^1}+1$,
故${a_n}={2^n}+1\;\;(n∈{N^*})$.
(Ⅱ)解:由(Ⅰ)及题设知:${b_n}=n×{2^n}$,
∴${S_n}=1×{2^1}+2×{2^2}+3×{2^3}+…+(n-1)•{2^{n-1}}+n•{2^n}$
∴$2{S_n}=\;\;\;\;\;\;\;1×{2^2}+2×{2^3}+3×{2^4}+…+(n-1)•{2^n}+n•{2^{n+1}}$
∴${S_n}=n•{2^{n+1}}-(2+{2^2}+{2^3}+…+{2^n})=(n-1)•{2^{n+1}}+2$.
(Ⅲ)证明:由(Ⅰ)及题设知:${c_n}=\frac{1}{{({2^n}+1)({2^{n+1}}+1)}}$,
∴${2^n}{c_n}=\frac{2^n}{{({2^n}+1)({2^{n+1}}+1)}}=\frac{{({2^{n+1}}+1)-({2^n}+1)}}{{({2^n}+1)({2^{n+1}}+1)}}=\frac{1}{{{2^n}+1}}-\frac{1}{{{2^{n+1}}+1}}\;\;(n∈{N^*})$,
∴${T_n}=(\frac{1}{{{2^1}+1}}-\frac{1}{{{2^2}+1}})+(\frac{1}{{{2^2}+1}}-\frac{1}{{{2^3}+1}})+…+(\frac{1}{{{2^{n-1}}+1}}-\frac{1}{{{2^n}+1}})+(\frac{1}{{{2^n}+1}}-\frac{1}{{{2^{n+1}}+1}})$
即  ${T_n}=\frac{1}{{{2^1}+1}}-\frac{1}{{{2^{n+1}}+1}}=\frac{1}{3}-\frac{1}{{{2^{n+1}}+1}}$,
∴${T_n}<\frac{1}{3}$.

点评 本题考查了“累加求和”方法、“错位相减法”、等比数列的前n项和公式、“裂项求和”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.求下列函数的定义域.
(1)y=$\sqrt{sin(cosx)}$;
(2)y=lg(2sinx-1)+$\sqrt{1-2cosx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若x∈(0,2π),则函数y=cosx+xsinx的单调递减区间是($\frac{π}{2}$,$\frac{3π}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.数列{an}满足an+1+(-1)nan=2n-1,则{an}的前44项和为(  )
A.990B.870C.640D.615

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.以下四个关于圆锥曲线的命题中正确的个数为(  )
①曲线$\frac{x^2}{16}+\frac{y^2}{9}=1$与曲线$\frac{x^2}{16-k}+\frac{y^2}{9-k}=1(k<9)$有相同的焦点;
②方程2x2-3x+1=0的两根可分别作为椭圆和双曲线的离心率;
③过椭圆$\frac{x^2}{25}+\frac{y^2}{16}=1$的右焦点F2作动直线l与椭圆交于A,B两点,F1是椭圆的左焦点,则△AF1B的周长不为定值.
④过抛物线y2=4x的焦点作直线与抛物线交于A、B两点,则使它们的横坐标之和等于5的直线有且只有两条.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=1-$\frac{1}{x}$,x∈(-∞,0),判断f(x)的单调性并用定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设f(x)=$\left\{\begin{array}{l}{2{e}^{x-1}(x<2)}\\{lo{g}_{2}({x}^{2}-1)(x≥2)}\end{array}\right.$,则f(3)=(  )
A.2B.3C.8D.2e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设锐角△ABC的内角A,B,C所对边的长分别是a,b,c,且b=4,c=1,△ABC的面积为$\sqrt{3}$,则a的值为(  )
A.$\sqrt{21}$B.$\sqrt{13}$C.$\sqrt{13}$或$\sqrt{21}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设i为虚数单位,则复数z=$\frac{5i}{2-i}$的共轭复数在复平面内所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案