精英家教网 > 高中数学 > 题目详情
在平行四边形ABCD中,AC为一条对角线,
AB
=(2,4)
BD
=(-3,-5)
,则
AC
=
(1,3)
(1,3)
分析:先根据向量坐标的加法运算法则求出向量
AD
,然后根据平行四边形法则可知
AC
=
AB
+
AD
,从而可求出所求.
解答:解:∵
AB
=(2,4)
BD
=(-3,-5)

AD
=
AB 
+
BD
=(2,4)+(-3,-5)=(-1,-1)
根据平行四边形法则可知
AC
=
AB
+
AD
=(2,4)+(-1,-1)=(1,3)
故答案为:(1,3)
点评:本题主要考查了平面向量的坐标运算,以及向量加法的平行四边形法则,同时考查了转化的思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平行四边形ABCD中,AC与BD交于点O,E是线段CD的中点,若
AC
=
a
BD
=
b
,则
AE
=
 
.(用
a
b
表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•天津模拟)在平行四边形ABCD中,
AE
=
1
3
AB
AF
=
1
4
AD
,CE与BF相交于G点.若
AB
=
a
AD
=
b
,则
AG
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平行四边形ABCD中,边AB所在直线方程为2x-y-3=0,点C(3,0).
(1)求直线CD的方程;
(2)求AB边上的高CE所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平行四边形ABCD中,点E为CD中点,
AB
=
a
AD
=
b
,则
BE
等于
-
1
2
a
+
b
-
1
2
a
+
b

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区一模)在平行四边形ABCD中,若
AB
=(1,3)
AC
=(2,5)
,则向量
AD
的坐标为
(1,2)
(1,2)

查看答案和解析>>

同步练习册答案