精英家教网 > 高中数学 > 题目详情

已知定义在的函数,在处的切线斜率为
(Ⅰ)求的单调区间;
(Ⅱ)当时,恒成立,求的取值范围.

(Ⅰ)的减区间为,增区间为,(Ⅱ).

解析试题分析:利用导数几何意义求,利用导数的应用求函数的单调区间;利用导数判断最值的方法应用于不等式恒成立问题.
试题解析:(Ⅰ)      2分
由题可知,易知,           3分
,则,则为增函数所以的唯一解.                4分

可知的减区间为
同理增区间为               6分
(Ⅱ)令

注:此过程为求最小值过程,方法不唯一,只要论述合理就给分,
为增函数,
满足题意;                   9分


因为
则对于任意,必存在,使得
必存在使得为负数,
为减函数,则矛盾,             11分
注:此过程为论述当存在减区间,方法不唯一,只要论述合理就给分;
综上所述                12分
考点:导数几何意义,导数的应用,不等式恒成立问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求的极值;
(Ⅱ)若在区间上是增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知 ().
(1)当时,判断在定义域上的单调性;
(2)若上的最小值为,求的值;
(3)若上恒成立,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数在区间上存在极值点,求实数的取值范围;
(2)当时,不等式恒成立,求实数的取值范围;
(3)求证:.(为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若,求函数在区间上的最值;
(Ⅱ)若恒成立,求的取值范围.
注:是自然对数的底数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(Ⅰ)若,讨论的单调性;
(Ⅱ)时,有极值,证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,它的一个极值点是
(Ⅰ) 求的值及的值域;
(Ⅱ)设函数,试求函数的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求的极值;
(Ⅱ)当时,若不等式上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数 
(1) 当时,求函数的单调区间;
(2) 当时,求函数上的最小值和最大值

查看答案和解析>>

同步练习册答案