精英家教网 > 高中数学 > 题目详情
定义在R上的函数f(x)满足f(x+y)=f(x)•f(y)(x,y∈R),且当x>0时,f(x)>1;f(2)=4.
(Ⅰ)求f(1),f(-1)的值;    
(Ⅱ)证明:f(x)是单调递增函数;
(III) 若f(x2-ax+a)≥
2
对任意x∈(1,+∞)恒成立,求实数a的取值范围.
分析:(Ⅰ)由题设条件知f(2)=f(1+1)=f(1)•f(1)=4,f(1)=f((-1)+2)=f(-1)•f(2),由此能求出f(1)和f(-1).
(Ⅱ)设x1,x2∈R且x1<x2,则f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)=f(x1)[f(x2-x1)-1],由x2-x1>0,知f(x2-x1)-1>0,再由f(x1)=f(
x1
2
+
x1
2
)=[f(
x1
2
)]2>0,能够证明f(x)在R上是增函数.
(III)由f(x2-ax+a)≥
2
,知f(x2-ax+a)•f(x2-ax+a)=f(2x2-2ax+2a)≥2=f(1),再由f(x)在R上是增函数,能够求出实数a的取值范围.
解答:(Ⅰ)解:∵定义在R上的函数f(x)满足f(x+y)=f(x)•f(y)(x,y∈R),
且当x>0时,f(x)>1,f(2)=4,
∴f(2)=f(1+1)=f(1)•f(1)=4,
∴f(1)=2,或f(1)=-2(舍).
故f(1)=2.
∵f(1)=f((-1)+2)=f(-1)•f(2),
∴f(-1)=
f(1)
f(2)
=
2
4
=
1
2

(Ⅱ)证明:设x1,x2∈R且x1<x2,则f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)=f(x1)[f(x2-x1)-1]
∵x2-x1>0,
∴f(x2-x1)>1
∴f(x2-x1)-1>0,
∵f(x1)=f(
x1
2
+
x1
2
)=[f(
x1
2
)]2>0,
∴f(x1)f[(x2-x1)-1]>0,
∴f(x2)>f(x1),
故f(x)在R上是增函数.
(III)解:∵f(x2-ax+a)≥
2

∴f(x2-ax+a)•f(x2-ax+a)=f(2x2-2ax+2a)≥2=f(1),
∵f(x)在R上是增函数,
∴2x2-2ax+2a≥1,
∴由f(x2-ax+a)≥
2
对任意x∈(1,+∞)恒成立,
得2x2-2ax+2a≥1对任意x∈(1,+∞)恒成立,
∵y=2x2-2ax+2a-1的对称轴是x=
a
2

∴在[
a
2
,+∞)上y=2x2-2ax+2a-1是单调递增函数.
∵2x2-2ax+2a≥1对任意x∈(1,+∞)恒成立,
a
2
≤1,故a≤2.
∴实数a的取值范围(-∞,2].
点评:本题考查抽象函数的应用,考查函数的单调性的判断与证明,突出考查等价转化思想的运用,考查基本不等式,综合性强,难度大,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x∈[0,
π
2
]时,f(x)=sinx,则f(
3
)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

20、已知定义在R上的函数f(x)=-2x3+bx2+cx(b,c∈R),函数F(x)=f(x)-3x2是奇函数,函数f(x)在x=-1处取极值.
(1)求f(x)的解析式;
(2)讨论f(x)在区间[-3,3]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足:f(x+2)=
1-f(x)1+f(x)
,当x∈(0,4)时,f(x)=x2-1,则f(2010)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值与最小值的差为4,相邻两个最低点之间距离为π,函数y=sin(2x+
π
3
)图象所有对称中心都在f(x)图象的对称轴上.
(1)求f(x)的表达式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)的图象是连续不断的,且有如下对应值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函数f(x)一定存在零点的区间是(  )

查看答案和解析>>

同步练习册答案