精英家教网 > 高中数学 > 题目详情
已知的展开式中,前三项系数的绝对值依次成等差数列,则下列结论正确的是( )
A.展开式中共有八项
B.展开式中共有四项为有理项
C.展开式中没有常数项
D.展开式中共有五项为无理项
【答案】分析:由题意通过前三项系数的绝对值依次成等差数列,求出n的值,然后判断二项式的项数,有没有有理项,常数项,是否存在展开式中共有五项为无理项,得到结果.
解答:解:已知的展开式中,前三项系数的绝对值依次成等差数列,
所以,解得n=8,
展开式中共有九项,A不正确;
展开式的第k+1项为Ck88-k(-k
=(-kCk8•x •x-=(-1)k•Ck8•x
若第k+1项为常数项,
当且仅当 =0,即3k=16,
∵k∈Z,∴这不可能,∴展开式中没有常数项.C正确;
若第k+1项为有理项,当且仅当 为整数,
∵0≤k≤8,k∈Z,∴k=0,4,8,
即展开式中的有理项共有三项,它们是:
T1=x4,T5=x,T9=x-2.所以展开式中共有四项为有理项,不正确.
展开式中共有五项为无理项.显然不正确.
故选C.
点评:本题是中档题,考查二项式定理的应用,二项式系数的性质,考查计算能力,常考题型.
练习册系列答案
相关习题

科目:高中数学 来源:2013届山东省高二下学期期末考试理科数学试卷(解析版) 题型:解答题

已知的展开式中,前三项系数的绝对值依次成等差数列.

(Ⅰ)证明展开式中没有常数项;

(Ⅱ)求展开式中所有的有理项.

 

查看答案和解析>>

科目:高中数学 来源:2013届浙江省高二第一次月考理科数学试卷(解析版) 题型:解答题

已知的展开式中,前三项系数的绝对值依次成等差数列。

(1)   证明:展开式中无常数项;

求展开式中所有有理项。

 

查看答案和解析>>

科目:高中数学 来源:新课标高三数学组合、排列与组合的综合问题专项训练(河北) 题型:解答题

已知的展开式中,前三项系数的绝对值依次成等差数列。

(1)   证明:展开式中无常数项;

求展开式中所有有理项。

 

查看答案和解析>>

科目:高中数学 来源:2013届湖北省高二上学期期中考试理科数学 题型:解答题

( (本题满分12分)已知的展开式中,前三项系数的绝对值依次成等差数列.(1)求:展开式中各项系数的和;(2)求展开式中所有有理项.

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年辽宁省高二下学期第二次考试理数 题型:解答题

.(10分)已知的展开式中,前三项的系数的绝对值依次成等差数列,

(1)证明:展开式中没有常数项;

(2)求展开式中所有有理项.

 

查看答案和解析>>

同步练习册答案