精英家教网 > 高中数学 > 题目详情
数列-1,1,-1,1,…的通项公式是(  )
分析:由数列-1,1,-1,1,…可知:奇数项的符号为负的,偶数项的符号为正的,且每一项的绝对值等于1,故可得出通项公式.
解答:解:数列-1,1,-1,1,…的通项公式是an=(-1)n
故选A.
点评:本题考查了数列的通项公式的求法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、某资料室在计算机使用中,如表所示,编码以一定规则排列,且从左至右以及从上到下都是无限的.此表中,主对角线上数列1,2,5,10,17,…的通项公式为
an=n2-2n+2(n∈N+
;编码100共出现
6
次.
1 1 1 1 1 1
1 2 3 4 5 6
1 3 5 7 9 11
1 4 7 10 13 16
1 5 9 13 17 21
1 6 11 16 21 26

查看答案和解析>>

科目:高中数学 来源: 题型:

设P1(x1,y1)、P2(x2,y2)是函数f(x)=
2x
2x+
2
图象上的两点,且
OP
=
1
2
(
OP1
+
OP2
)
,点P的横坐标为
1
2

(1)求证:P点的纵坐标为定值,并求出这个定值;
(2)若Sn=
n
i=1
f(
i
n
),n∈N*
,求Sn
(3)记Tn为数列{
1
(Sn+
2
)(Sn+1+
2
)
}
的前n项和,若Tn<a(Sn+1+
2
)
对一切n∈N*都成立,试求a的取值范围.
an-1+1=
an
n

(1+
1
a1
)(1+
1
a2
)(1+
1
a3
)…(1+
1
an
)≤3-
1
n

查看答案和解析>>

科目:高中数学 来源: 题型:

下面有四个命题:
①如果已知一个数列的递推公式及其首项,那么可以写出这个数列的任何一项;
②数列
2
3
3
4
4
5
5
6
,…的通项公式是an=
n
n+1

③数列的图象是一群孤立的点;
④数列1,-1,1,-1,…与数列-1,1,-1,1,…是同一数列.
其中正确命题的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

对于一个有n项的数列P=(P1,P2,…,Pn),P的“蔡查罗和”定义为
1n
(S1+S2+…+Sn)其中Sk=(P1+P2+…+Pn)(1≤k≤n)若一个100项的数列(P1,P2,…,P100)的“蔡查罗和”为201.97,那么102项数列(1,1,P1,P2,…,P100)的“蔡查罗和”为
200
200

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{xn}是公差为d(d>0)的等差数列,
.
x
n
表示{xn}
的前n项的平均数.
(1)证明数列{
.
x
n
}
也是等差数列,并指出公差;
(2)记{xn}的前n项和为Sn{
.
x
n
}
的前n项和为Tn,数列{
1
S n+1-Tn+1
}
的前n项和为Un,求证:Un
4
d

查看答案和解析>>

同步练习册答案