精英家教网 > 高中数学 > 题目详情
设f(x)=2x+1,f1(x)=f(f(x)),fn(x)=f(fn-1(x))(n∈N*,n≥2),请通过计算,f1(x),f2(x),f3(x),…,归纳出fn(x)的表达式fn(x)=
2n+1x+2n+1-1
2n+1x+2n+1-1
分析:本题考察的知识点是归纳推理,方法是根据已知条件和递推关系,先求出数列的前几项,然后总结归纳其中的规律,写出其通项.
解答:解:∵f(x)=2x+1,f1(x)=f(f(x)),fn(x)=f(fn-1(x))(n∈N*,n≥2),
∴f1(x)=4x+3=21+1x+21+1-1
f2(x)=8x+7=22+1x+22+1-1
f1(x)=16x+15=23+1x+23+1-1

不妨猜想:fn(x)=2n+1x+2n+1-1
故答案为:2n+1x+2n+1-1
点评:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、设函数f(x),g(x)的定义域分别为DJ,DE.且DJ?DE,若对于任意x∈DJ,都有g(x)=f(x),则称函数g(x)为f(x)在DE上的一个延拓函数.设f(x)=xlnx(x>0),g(x)为f(x)在(-∞,0)∪(0,+∞)上的一个延拓函数,且g(x)是奇函数,则g(x)=
xln|x|
;设f(x)=2x-1(x≤0),g(x)为f(x)在R上的一个延拓函数,且g(x)是偶函数,则g(x)=
2-|x|-1

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
2x+1(x≥0)
f(x+1)(x<0)
,则f(-1)=(  )
A、1
B、2
C、4
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

用min{a,b}表示a,b两个数中的较小值.设f(x)={2x-1,
1x
}(x>0),则f(x)的最大值为
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
2x+1,x≥1
2-x,x<1
,则f(f(-2))的值为
9
9

查看答案和解析>>

科目:高中数学 来源: 题型:

设F(x)=2
x
+1,若F′(x)=f(x),则∫
 
2
0
f(2x)dx值为(  )
A、2
2
B、
2
C、2
D、1

查看答案和解析>>

同步练习册答案