精英家教网 > 高中数学 > 题目详情
4.向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|=2,则|3$\overrightarrow{a}$+5$\overrightarrow{b}$|=14.

分析 利用向量数量积运算性质即可得出.

解答 解:∵$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|=2,
∴4=${\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}$-2$\overrightarrow{a}•\overrightarrow{b}$,
化为$\overrightarrow{a}•\overrightarrow{b}$=2,
则|3$\overrightarrow{a}$+5$\overrightarrow{b}$|=$\sqrt{9{\overrightarrow{a}}^{2}+25{\overrightarrow{b}}^{2}+30\overrightarrow{a}•\overrightarrow{b}}$=$\sqrt{9×4+25×4+30×2}$=14.
故答案为:14.

点评 本题考查了向量数量积运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.等式sin(30°+120°)=sin30°是否成立?如果这个等式成立,那么能否说明120°是正弦函数y=sinx的周期?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知正项等比数列{an}中,a1a5+2a2a6+a3a7=100,a2a4-2a3a5+a4a6=36,求数列{an}的通项an及前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.用lgx,lgy,lgz表示下列各式:
(1)lg$\frac{{x}^{\frac{1}{2}}{y}^{3}}{{z}^{-\frac{1}{2}}}$
(2)lg($\sqrt{x}•\root{5}{{y}^{3}}•{z}^{-1}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.log21.25+log20.2=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.解不等式组:$\left\{\begin{array}{l}{|x-3|≤5}\\{-{x}^{2}-x+6<0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{4}{5}$,以其焦点为顶点,左右顶点为焦点的双曲线的渐近线方程为y=±$\frac{3}{4}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=log2x-$\frac{7}{x}$的零点包含于区间(  )
A.(1,2)B.(2,3)C.(3,4)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在直角坐标系xOy中,中心在原点O,焦点在x轴上的椭圆C上的点$(2\sqrt{2},1)$到两焦点的距离之和为4$\sqrt{3}$.
(1)求椭圆C的方程;
(2)设点P在椭圆C上,F1、F2为椭圆C的左右焦点,若∠F1PF2=$\frac{π}{3}$,求△F1PF2的面积.

查看答案和解析>>

同步练习册答案