分析 (1)由于tan$\frac{β}{2}$=$\frac{1}{2}$,可得sinβ=$2sin\frac{β}{2}cos\frac{β}{2}$=$\frac{2sin\frac{β}{2}cos\frac{β}{2}}{si{n}^{2}\frac{β}{2}+co{s}^{2}\frac{β}{2}}$=$\frac{2tan\frac{β}{2}}{1+ta{n}^{2}\frac{β}{2}}$.同理可得cosβ=$\frac{1-ta{n}^{2}\frac{β}{2}}{1+ta{n}^{2}\frac{β}{2}}$.
(2)∵$\overrightarrow{a}•\overrightarrow{b}=\frac{5}{13}$=cosαsinβ+sinαcosβ=$\frac{4}{5}$cosα+$\frac{3}{5}$sinα,又α∈(0,π),sin2α+cos2α=1,解出即可.
解答 解:(1)∵tan$\frac{β}{2}$=$\frac{1}{2}$,∴sinβ=$2sin\frac{β}{2}cos\frac{β}{2}$=$\frac{2sin\frac{β}{2}cos\frac{β}{2}}{si{n}^{2}\frac{β}{2}+co{s}^{2}\frac{β}{2}}$=$\frac{2tan\frac{β}{2}}{1+ta{n}^{2}\frac{β}{2}}$=$\frac{2×\frac{1}{2}}{1+(\frac{1}{2})^{2}}$=$\frac{4}{5}$.
同理可得cosβ=$\frac{1-ta{n}^{2}\frac{β}{2}}{1+ta{n}^{2}\frac{β}{2}}$=$\frac{1-(\frac{1}{2})^{2}}{1+(\frac{1}{2})^{2}}$=$\frac{3}{5}$.
(2)∵$\overrightarrow{a}•\overrightarrow{b}=\frac{5}{13}$=cosαsinβ+sinαcosβ=$\frac{4}{5}$cosα+$\frac{3}{5}$sinα,
又α∈(0,π),sin2α+cos2α=1,
化为7sin2α-150sinα+48=0,
解得sinα=$\frac{75-\sqrt{5289}}{7}$.
点评 本题考查了三角函数求值、倍角公式、同角三角函数基本关系式、数量积运算性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 4个 | B. | 5个 | C. | 6个 | D. | 7个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ||PF1|-|PF2||=5 | B. | ||PF1|-|PF2||=6 | C. | |PF1|-|PF2|=7 | D. | ||PF1|-|PF2||=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {x|kπ-$\frac{π}{12}$<x<kπ+$\frac{π}{4}$,k∈Z} | B. | {x|kπ+$\frac{π}{4}$<x<kπ+$\frac{11π}{12}$,k∈Z} | ||
C. | {x|kπ-$\frac{π}{6}$<x<kπ+$\frac{π}{2}$,k∈Z} | D. | {x|kπ<x<kπ+$\frac{π}{3}$,k∈Z} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com