精英家教网 > 高中数学 > 题目详情
(2007•成都一模)定义在(-1,1)上的函数f(x)满足:f(-x)+f(x)=0,当x∈(-1,0)时函数f(x)的导函数f'(x)<0恒成立.如果f(1-a)+f(1-a2)>0,则实数a的取值范围为
1<a<
2
1<a<
2
分析:先判断函数为奇函数,再由题意得f(x)在x∈(-1,1)上为单调递减函数,从而可建立不等式组,解之即可得到实数a的取值范围
解答:解:∵f(-x)=-f(x),x∈(-1,1),
∴f(x)为奇函数;
又x∈(-1,0)时,f'(x)<0,
∴f'(x)在(-1,0)上是单调递减函数.
由奇函数的性质,可知f(x)在x∈(-1,1)上为单调递减函数;
f(1-a)+f(1-a2)>0?f(1-a)>f(a2-1)?
-1<1-a<1
-1<1-a2<1.
1-a<a2-1

0<a<2
0<a<
2
或-
2
 <a<0
a>1或a<-2

解得1<a<
2

故答案为:1<a<
2
点评:本题以函数的性质为载体,考查函数性质的运用,考查解不等式,解题的关键是判断f(x)在x∈(-1,1)上为单调递减函数
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2007•成都一模)已知向量m=(x2,y-cx),n=(1,x+b)(x,y,b,c∈R)且m∥n,把其中x,y所满足的关系式记为y=f(x).若f′(x)为f(x)的导函数,F(x)=f(x)+af'(x)(a>0),且F(x)是R上的奇函数.
(Ⅰ)求
ba
和c
的值;
(Ⅱ)求函数f(x)的单调递减区间(用字母a表示);
(Ⅲ)当a=2时,设0<t<4且t≠2,曲线y=f(x)在点A(t,f(t))处的切线与曲线y=f(x)相交于点B(m,f(m))(A与B不重合),直线x=t与y=f(m)相交于点C,△ABC的面积为S,试用t表示△ABC的面积S(t);并求S(t)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•成都一模)如图,设地球半径为R,点A、B在赤道上,O为地心,点C在北纬30°的纬线(O'为其圆心)上,且点A、C、D、O'、O共面,点D、O'、O共线.若∠AOB=90°,则异面直线AB与CD所成角的余弦值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•成都一模)已知集合U=R,集合M={y|y=2|x|,x∈R},集合N={x|y=lg(3-x)},则M∩N=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•成都一模)若函数f(x)的反函数为f-1(x)=x2+2(x<0),则f(log327)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•成都一模)若递增等比数列{an}满足:a1+a2+a3=
7
8
a1a2a3=
1
64
,则此数列的公比q=(  )

查看答案和解析>>

同步练习册答案