精英家教网 > 高中数学 > 题目详情
10.已知f(x)=2cos2x-2asinx+a2-2a+1(0≤x≤$\frac{π}{2}$)的最小值为-2,求实数a的值,并求此时f(x)的最大值.

分析 化简f(x)=2cos2x-2asinx+a2-2a+1=f(x)=2(1-sin2x)-2asinx+a2-2a+1=-2(sinx+$\frac{a}{2}$)2+$\frac{3}{2}{a}^{2}$-2a+3
结合0≤cosx≤1分类讨论由二次函数区间的最值可得.

解答 解:化简f(x)=2cos2x-2asinx+a2-2a+1可得f(x)=2(1-sin2x)-2asinx+a2-2a+1
=-2(sinx+$\frac{a}{2}$)2+$\frac{3}{2}{a}^{2}$-2a+3
∵0≤x≤$\frac{π}{2}$,∴0≤sinx≤1,
令g(t)=-2(t+$\frac{a}{2}$)2+$\frac{3}{2}{a}^{2}$-2a+3,0≤t≤1
当-$\frac{a}{2}$$≥\frac{1}{2}$即a≤-1时,即t=0时函数g(t)取最小值,a2-2a+3=-2,无解
当-$\frac{a}{2}<\frac{1}{2}$时,即a≥-1时,即t=1时,函数g(t)取最小值,a2-4a+1=-2,解得a=1,a=3(符合题意)
此时f(x)的最大值为g(0)=2或6.

点评 本题考查三角函数的最值,涉及二次函数区间的最值和分类讨论的思想,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.设a,b,m,n∈R,且a2+b2=3,ma+nb=3,则 $\sqrt{{m}^{2}+{n}^{2}}$的最小值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,A、B、C所对的边分别是a、b、c,已知a2+b2=c2+$\sqrt{3}$ab,则C=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{3}$或$\frac{2π}{3}$D.$\frac{π}{6}$或$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知圆与y轴相切,圆心在直线3x-y=0,且这个圆经过点A(2,3),求该圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示,在△ABC中,AB=3$\sqrt{6},B=\frac{π}{4}$,D是BC边上一点,且∠ADB=$\frac{π}{3}$
(Ⅰ)求BD的长;
(Ⅱ)若CD=10,求AC的长及△ADC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(Ⅰ)求不等式|x+3|-|x-2|≥3的解集;
(Ⅱ)设a>b>0,求证:$\frac{{a}^{2}-{b}^{2}}{{a}^{2}+{b}^{2}}$>$\frac{a-b}{a+b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知0<c<1,a>b>1,下列不等式成立的是(  )
A.ca>cbB.$\frac{a}{a-c}>\frac{b}{b-c}$C.bac>abcD.logac>logbc

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.(文)已知x,y满足(1+i)+(2-3i)=a+bi,则a,b分别等于(  )
A.3,-2B.3,2C.3,-3D.-1,4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知复数z=(a-4)+(a+2)i(a∈R),则“a=2”是“z为纯虚数”的(  )
A.充分不必要条件B.必要不充分条件
C.既不充分也不必要条件D.充要条件

查看答案和解析>>

同步练习册答案