精英家教网 > 高中数学 > 题目详情
经过点且与直线相切的动圆的圆心轨迹为.点在轨迹上,且关于轴对称,过线段(两端点除外)上的任意一点作直线,使直线与轨迹在点处的切线平行,设直线与轨迹交于点.
(1)求轨迹的方程;
(2)证明:
(3)若点到直线的距离等于,且的面积为20,求直线的方程.
(1);(2)证明过程详见解析;(3).

试题分析:本题主要考查抛物线、圆、直线的标准方程和几何性质,考查用代数法研究圆锥曲线的性质以及数形结合思想、分类讨论思想.第一问,根据圆与直线相切列出表达式;第二问,把证明角相等转化为证明两个斜率之间的关系;第三问,找直线上的点的坐标和直线的斜率,本问应用了数形结合思想.
试题解析:(1)设动圆圆心为,依题意得.
整理,得,所以轨迹的方程为.(2分)
(2)由(1)得,即,则.
设点,由导数的几何意义知,直线的斜率为
由题意知点,设点

.
因为
由于,即
所以.(6分)
(3)由点的距离等于,可知

不妨设点上方(如图),即,直线的方程为:.
,解得点的坐标为
所以
由(2)知,同理可得
所以的面积,解得.
时,点的坐标为
直线的方程为,即.
时,点的坐标为
直线的方程为,即. (12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于.
(1)求动点P的轨迹方程;
(2)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知一个圆的圆心为坐标原点,半径为.从这个圆上任意一点轴作垂线为垂足.
(Ⅰ)求线段中点的轨迹方程;
(Ⅱ)已知直线的轨迹相交于两点,求的面积

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心为原点,长轴长为,一条准线的方程为.
(Ⅰ)求该椭圆的标准方程;
(Ⅱ)射线与椭圆的交点为,过作倾斜角互补的两条直线,分别与椭圆交于 两点(两点异于).求证:直线的斜率为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆过点,离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点且斜率为)的直线与椭圆相交于两点,直线分别交直线 于两点,线段的中点为.记直线的斜率为,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左焦点为,右焦点为

(Ⅰ)设直线过点且垂直于椭圆的长轴,动直线垂直于点P,线段的垂直平分线交于点M,求点M的轨迹的方程;
(Ⅱ)设为坐标原点,取曲线上不同于的点,以为直径作圆与相交另外一点,求该圆的面积最小时点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动点到定点的距离之和为.
(Ⅰ)求动点轨迹的方程;
(Ⅱ)设,过点作直线,交椭圆异于两点,直线的斜率分别为,证明:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

中心为, 一个焦点为的椭圆,截直线所得弦中点的横坐标为,则该椭圆方程是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线,过的直线分别交于,若是线段的中点,则等于(  )
A.12B.C.D.

查看答案和解析>>

同步练习册答案