精英家教网 > 高中数学 > 题目详情
18.圆心在抛物线y2=2x(y>0)上,并且与抛物线的准线及x轴都相切的方程是(  )
A.x2+y2-x-2y-$\frac{1}{4}$=0,B.x2+y2+x-2y+1=0,
C.x2+y2-x+1=0,D.x2+y2-x-2y+$\frac{1}{4}$=0,

分析 由题意可设圆心坐标为( $\frac{{b}^{2}}{2}$,b)再跟据与抛物线的准线及x轴都相切可得 $\frac{{b}^{2}}{2}$+$\frac{1}{2}$=b 所以b=1故半径R=1可写出圆的方程为方程为(x-$\frac{1}{2}$)2+(y-1)2=1整理即可.

解答 解:设圆心坐标为($\frac{{b}^{2}}{2}$,b),则由所求圆与抛物线的准线及x轴都相切可得$\frac{{b}^{2}}{2}$+$\frac{1}{2}$=b  所以b=1 故圆心为($\frac{1}{2}$,1)半径R=1 所以圆心在抛物线y2=2x(y>0)上,并与抛物线的准线及x轴都相切的圆方程为(x-$\frac{1}{2}$)2+(y-1)2=1即x2+y2-x-2y+$\frac{1}{4}$=0
故选:D.

点评 此题属基础题主要考查了圆与抛物线的综合.关键是利用题中的条件求出圆心和半径结合圆的标准方程写出符合条件的方程整理即可!

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=9x+1.
(1)若g(x)=f(x4)-37,求g(x)的解析式;
(2)求函数g(x)的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2+ax+1是偶函数.
(1)求a的值;
(2)当x∈(-∞,0]时判断并证明f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知双曲线C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的渐近线方程为y=±$\sqrt{2}$x,且过点$({-\sqrt{2},\sqrt{2}})$.
(1)求双曲线C的标准方程;
(2)斜率为k且过点P(1,2)的直线l与双曲线C有两个公共点,求k的取值范围;
(3)在(2)的条件下,试判断以Q(1,1)为中点的弦是否存在?若存在,求出其所在直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.一个长方体的四个顶点构成一个四面体EFHG,在这个长方体中把四面体EFHG截出如图所示,则四面体EFHG的侧视图是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,三棱台ABC-DEF中,CF⊥平面DEF,AC⊥BC,且DF=EF=CF=2AC.
(Ⅰ)设平面AEC∩平面DEF=a,求证:DF∥a;
(Ⅱ)求异面直线AE与CF所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某几何体的一条棱长为m,在该几何体的正视图中,这条棱的投影是长为4的线段.在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a和b的线段,若a+b=6,则m的最小值为$\sqrt{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在△ABC中,G为重心,I为内心.若GI∥BC,证明:AB,BC,CA三边长成等差数列.

查看答案和解析>>

同步练习册答案