精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 ,其中 为左、右焦点,且离心率,直线与椭圆交于两不同点 .当直线过椭圆右焦点且倾斜角为时,原点到直线的距离为.

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395913728/STEM/2d7d70ba831f438cb4e191e234d85c18.png]

(Ⅰ)求椭圆的方程;

(Ⅱ)若,当面积为时,求的最大值.

【答案】(Ⅰ) ;(Ⅱ)5.

【解析】试题分析:()本题考察的是椭圆的标准方程问题,根据题设条件和椭圆的定义,即可求出椭圆的方程;

)本题考察的是圆锥曲线中的最值与范围问题,由于直线方程的斜率存在与否未知,需要分直线斜率存在和不存在的两种情况讨论,再联立方程组,利用韦达定理和弦长公式,得到,再利用基本不等式即可求出所求答案。

试题解析:(1)因为直线的倾斜角为,所以,直线的方程为

由已知得,所以.又,所以,

椭圆的方程

2)当直线的斜率不存在时, 两点关于轴对称,则

在椭圆上,则,而,则

=

当直线的斜率存在时,设直线,代入可得

,即,由题意,即

,

化为

,满足,

由前知

,当且仅当,即时等号成立,

综上可知的最大值为

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2015/12/14/1572357219860480/1572357226373120/EXPLANATION/e9a188fc269d42bdb85c3fefe32573fd.png]

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知平面,且四边形为直角梯形,,点,分别是,的中点.

(1)求证:平面

(2)若点为棱上一点,且平面平面, 求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,有正弦定理:定值,这个定值就是的外接圆的直径如图2所示,中,已知,点M在直线EF上从左到右运动M不与EF重合,对于M的每一个位置,记的外接圆面积与的外接圆面积的比值为,那么  

A. 先变小再变大

B. 仅当M为线段EF的中点时,取得最大值

C. 先变大再变小

D. 是一个定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某测量人员为了测量西江北岸不能到达的两点之间的距离,她在西江南岸找到一个点,从点可以观察到点;找到一个点,从点可以观察到点;找到一个点,从点可以观察到点;并测量得到数据:百米.

(1)求的面积;

(2)求之间的距离的平方.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:

作物产量(kg)

300

500

概率

0.5

0.5

作物市场价格(元/kg)

6

10

概率

0.4

0.6

(1)设X表示在这块地上种植1季此作物的利润,求X的分布列;

(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,b>0,a3b3=2.证明:

(1)(ab)(a5b5)≥4;

(2)ab≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点F为抛物线C:x2=2py (p>0) 的焦点,点A(m,3)在抛物线C上,且|AF|=5,若点P是抛物线C上的一个动点,设点P到直线的距离为,设点P到直线的距离为

(1)求抛物线C的方程;

(2) 求的最小值;

(3)求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为,离心率为,且椭圆四个顶点构成的菱形面积为

(1)求椭圆C的方程;

(2)若直线l :y=x+m与椭圆C交于M,N两点,以MN为底边作等腰三角形,顶点为P(3,-2),求m的值及△PMN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时, 恒成立,求的范围;

(2)若处的切线为,求的值.并证明当)时, .

查看答案和解析>>

同步练习册答案