【题目】已知圆心在直线上的圆,其圆心到轴的距离恰好等于圆的半径,在轴上截得弦长为,则圆的方程为( )
A.B.
C.D.
【答案】D
【解析】
根据题意画出图形,过M作MA垂直于x轴,MB垂直于y轴,连接MC,由垂径定理得到B为CD中点,由求出,由圆与x轴垂直得到圆与x轴相切,所以MA和MC为圆M的半径,在直角三角形MBC中,由,及,利用勾股定理列出关于a与b的方程,再把M的坐标代入到直线中,又得到关于a与b的另一个方程,联立两方程即可求出a与b的值,确定圆心及圆的半径即得结果.
根据题意画出图形,如图所示:
过M作轴,轴,连接MC,
由垂径定理得到B为CD中点,又,
∴,
由题意可知圆的半径,,
根据勾股定理得:,①
又圆心在直线上,得,②
联立①②,解得:,,
所以圆心坐标为,半径,
则所求圆的方程为:,
故选:D.
科目:高中数学 来源: 题型:
【题目】已知,,其中,则下列判断正确的是__________.(写出所有正确结论的序号)
①关于点成中心对称;
②在上单调递增;
③存在,使;
④若有零点,则;
⑤的解集可能为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点为,点在椭圆上.
(1)设点到直线的距离为,证明:为定值;
(2)若是椭圆上的两个动点(都不与重合),直线的斜率互为相反数,当时,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等差数列的前项和为,已知,且.
(1)求的通项公式.
(2)设,数列的前项和为,求使不等式成立的最小的正整数.
(3)设.若数列单调递增.
①求的取值范围.
②若是符合条件的最小正整数,那么中是否存在三项依次成等差数列?若存在,给出的值.若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点恰好是椭圆的右焦点.
(1)求实数的值及抛物线的准线方程;
(2)过点任作两条互相垂直的直线分别交抛物线于、和、点,求两条弦的弦长之和的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点为坐标原点,椭圆 的左、右焦点分别为,,通径长(即过焦点且垂直于长轴的直线与椭圆相交所得的弦长)为3,短半轴长为.
(1)求椭圆的标准方程;
(2)设过点的直线与椭圆相交于,两点,线段上存在一点到,两边的距离相等,若,间直线的斜率是否存在?若存在,求直线的斜率的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一年之计在于春,一日之计在于晨,春天是播种的季节,是希望的开端.某种植户对一块地的个坑进行播种,每个坑播3粒种子,每粒种子发芽的概率均为,且每粒种子是否发芽相互独立.对每一个坑而言,如果至少有两粒种子发芽,则不需要进行补播种,否则要补播种.
(1)当取何值时,有3个坑要补播种的概率最大?最大概率为多少?
(2)当时,用表示要补播种的坑的个数,求的分布列与数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com