精英家教网 > 高中数学 > 题目详情
4.已知a∈R,命题p:“?x∈[1,2],x2-a≥0”,命题q:“?x∈R,x2+2ax+2-a=0”.
(Ⅰ)若命题p为真命题,求实数a的取值范围;
(Ⅱ)若命题“p∧q”为假命题,求实数a的取值范围.

分析 (I)由命题p为真命题,问题转化为求出x2min,从而求出a的范围;
( II)由命题“p∧q”为假命题,得到p为假命题或q为假命题,通过讨论p,q的真假,从而求出a的范围.

解答 解:(I)由命题p为真命题,a≤x2min,a≤1;
( II)由命题“p∧q”为假命题,所以p为假命题或q为假命题,
p为假命题时,由(I)a>1;
q为假命题时△=4a2-4(2-a)<0,-2<a<1,
综上:a∈(-2,1)∪(1,+∞).

点评 本题考查了复合命题的判断,考查函数恒成立问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.幂函数y=(m2-2m-2)x-4m-2在(0,+∞)上为增函数,则实数m=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{1}{2}$(2x+2-x);
(1)求函数的定义域;
(2)判断函数的奇偶性;
(3)判断并证明函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.AB是抛物线y=x2的一条弦,若AB的中点到x轴的距离为1,则弦AB的长度的最大值为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设p:x<3,q:-1<x<3,则p是q成立的必要不充分条件(用“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”填空).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知幂函数f(x)=xα的图象过$(2,\sqrt{2})$,则f(x)=${x}^{\frac{1}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知定义在R上的函数f(x)是满足f(x)+f(-x)=0,在(-∞,0)上$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}<0$,且f(5)=0,则使f(x)<0的x取值范围是(-5,0)∪(5,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,角A、B、C所对的边分别是a、b、c,若$({a^2}+{c^2}-{b^2})tanB=\sqrt{3}ac$,则$\frac{bsinA}{a}$的值为(  )
A.1B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.若椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的右焦点F(1,0)与抛物线E:y2=2px(p>0)焦点重合,过F且倾斜角为45°的直线交椭圆于A,B两点,且$\overrightarrow{AF}=3\overrightarrow{FB}$.
(1)求椭圆C的方程和抛物线E的方程;
(2)若斜率为k且F的直线l交抛物线E:y2=2px于C、D两点,交椭圆C于M,N两点,问是否存在实常数λ,使$\frac{1}{|MN|}+\frac{λ}{|CD|}$为常数,若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案