精英家教网 > 高中数学 > 题目详情
已知a>0,函数.
(1)若,求函数的极值,
(2)是否存在实数,使得成立?若存在,求出实数的取值集合;若不存在,请说明理由.
(1)极小值,没有极大值;(2)存在,.

试题分析:本题主要考查导数的应用、不等式等基础知识,考查思维能力、运算能力、分析问题与解决问题的能力,考查函数、转化与化归、特殊与一般等数学思想方法.第一问,先求导数,判断函数的单调性,根据极值的定义求极值;第二问,是恒成立问题,设出函数,此题可以转化为求函数最值的问题,此题比较综合.
试题解析:(1)当时,
因为,所以当时,,当时,,所以函数处取得极小值,函数没有极大值.      4分
(2)令,即
,令
所以有两个不等根,不妨设
所以上递减,在上递增,所以成立,
因为,所以,所以.

所以上递增,在上递减,
所以,又
所以代入
所以.       12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知点,直线与函数的图象交于点,与轴交于点,记的面积为.

(Ⅰ)求函数的解析式;
(Ⅱ)求函数的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

 
(1)如果处取得最小值,求的解析式;
(2)如果的单调递减区间的长度是正整数,试求的值.(注:区间的长度为

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)若内恒成立,求实数的取值范围.
(Ⅲ),求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(1) 当时,求的单调区间;
(2) 若当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)当时,不等式恒成立,求实数的取值范围.
(Ⅲ)求证:,e是自然对数的底数).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知二次函数的导数为轴恰有一个交点,则的最小值为(    )
A.3B.C.2D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知R上可导函数的图像如图所示,则不等式的解集为(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,函数的导函数是,且是奇函数,则的值为(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案