精英家教网 > 高中数学 > 题目详情
已知函数f(x)为偶函数,当x∈[0,+∞)时,f(x)=x-1,则满足f(x)<0的实数x的取值范围是
(-1,1)
(-1,1)
分析:当x≥0时,不难由f(x)<0得到x-1<0,所以解为0≤x<1;而当x<0时,函数为偶函数,故有f(-x)=f(x)得
f(x)<0即-x-1<0,所以-1<x<0,最后综合可得满足f(x)<0的实数x的取值范围.
解答:解:∵当x∈[0,+∞)时,f(x)=x-1,
∴当x≥0时,f(x)<0⇒x-1<0⇒0≤x<1
而当x<0时,函数为偶函数,故有f(-x)=-x-1=f(x)
f(x)<0⇒-x-1<0⇒-1<x<0
综上,得满足f(x)<0的实数x的取值范围是-1<x<1
故答案为:(-1,1)
点评:本题以函数奇偶性为例,考查了用函数的性质解不等式,属于基础题.解题时应该注意函数单调性与奇偶性的内在联系,是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2+
ax
(x≠0,常数a∈R).
(1)讨论函数f(x)的奇偶性,并说明理由;
(2)若函数f(x)在[2,+∞)上为增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x+a|-|x-a|(a≠0),h(x)=
-x2+x(x>0)
x2+x(x≤0)
,则f(x),h(x)的奇偶性依次为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga(1+x)-loga(1-x)(a>0且a≠1)
(1)讨论f(x)的奇偶性与单调性;
(2)若不等式|f(x)|<2的解集为{x|-
1
2
<x<
1
2
},求a
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•嘉定区一模)已知函数f(x)=|x|•(x-a).
(1)判断f(x)的奇偶性;
(2)设函数f(x)在区间[0,2]上的最小值为m(a),求m(a)的表达式;
(3)若a=4,证明:方程f(x)+
4x
=0有两个不同的正数解.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x+3-x,g(x)=
x
2
+log3(1+3-x).
(1)用定义证明:函数g(x)在区间(-∞,0]上为减函数,在区间[0,+∞)上为增函数;
(2)判断函数g(x)的奇偶性,并证明你的结论;
(3)若g(x)≤
1
2
log3f(x)+a对一切实数x恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案