¶ÔÓÚ¶¨ÒåÓòΪDµÄº¯Êýf£¨x£©£¬ÈôͬʱÂú×ãÏÂÁÐÌõ¼þ£º¢Ùf£¨x£©ÔÚDÄÚÓе¥µ÷ÐÔ£»¢Ú´æÔÚÇø¼ä[a£¬b]⊆D£¬Ê¹f£¨x£©ÔÚÇø¼ä[a£¬b]ÉϵÄÖµÓòҲΪ[a£¬b]£¬Ôò³Æf£¨x£©ÎªDÉϵġ°ºÍг¡±º¯Êý£¬[a£¬b]Ϊº¯Êýf£¨x£©µÄ¡°ºÍг¡±Çø¼ä£®
£¨¢ñ£©Çó¡°ºÍг¡±º¯Êýy=x3·ûºÏÌõ¼þµÄ¡°ºÍг¡±Çø¼ä£»
£¨¢ò£©ÅжϺ¯Êýf(x)=x+
4
x
(x£¾0)
ÊÇ·ñΪ¡°ºÍг¡±º¯Êý£¿²¢ËµÃ÷ÀíÓÉ£®
£¨¢ó£©Èôº¯Êýg(x)=
x+4
+m
ÊÇ¡°ºÍг¡±º¯Êý£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨¢ñ£©¸ù¾Ý¡°ºÍг¡±º¯ÊýµÄ¶¨Ò壬½¨Á¢Ìõ¼þ¹Øϵ£¬¼´¿ÉÇóy=x3·ûºÏÌõ¼þµÄ¡°ºÍг¡±Çø¼ä£»
£¨¢ò£©ÅжϺ¯Êýf(x)=x+
4
x
(x£¾0)
ÊÇ·ñÂú×ã¡°ºÍг¡±º¯Êý£¿µÄÌõ¼þ¼´¿É£®
£¨¢ó£©¸ù¾Ýº¯Êýg£¨x£©ÊÇ¡°ºÍг¡±º¯Êý£¬½¨Á¢Ìõ¼þ¹Øϵ£¬¼´¿ÉÇóʵÊýmµÄÈ¡Öµ·¶Î§£®
½â´ð£º½â£º£¨¢ñ£©ÒòΪy=x3Êǵ¥µ÷µÝÔöº¯Êý£¬
ËùÒÔÓÐ
a3=a
b3=b
a£¼b
a=-1
b=1
a=-1
b=0
a=0
b=1
£¬
¼´[a£¬b]=[-1£¬1]»ò[a£¬b]=[-1£¬0]»ò[a£¬b]=[0£¬1]£®
£¨¢ò£©º¯Êýf(x)=x+
4
x
ÔÚ£¨0£¬+¡Þ£©Éϲ»µ¥µ÷£¨ËµÃ÷£©£¬²»ÊÇ¡°ºÍг¡±º¯Êý£®
£¨¢ó£©Èôg(x)=
x+4
+m
ÊÇ¡°ºÍг¡±º¯Êý£®
Éè-4¡Üx1£¼x2£¬
Ôòg(x1)-g(x2)=
x1+4
-
x2+4
=
(x1+4)-(x2+4)
x1+4
+
x2+4
£¼0
£¬
ËùÒÔg(x)=
x+4
+m
Êǵ¥µ÷µÝÔöº¯Êý£®
ÈôËüÊÇ¡°ºÍг¡±º¯Êý£¬Ôò±Ø¾ß±¸·½³Ìx=
x+4
+m
ÓÐÁ½¸ö²»ÏàͬµÄʵÊý½â£¬
¼´·½³Ìx2-£¨2m+1£©x+m2-4=0ÓÐÁ½¸ö²»Í¬µÄʵÊý½âÇÒͬʱ´óÓÚ»òµÈÓÚ-4ºÍm£®ÈôÁîh£¨x£©=x2-£¨2m+1£©x+m2-4£¬
Ôò
¡÷£¾0
2m+1
2
£¾-4
h(-4)¡Ý0
x¡Ým
⇒m¡Ê(-
17
4
£¬-4]
£®
Áí½â£º·½³Ìx=
x+4
+m
ÓÐÁ½¸ö²»ÏàͬµÄʵÊý½â£¬
µÈ¼ÛÓÚÁ½º¯Êýy1=x-mÓëy2=
x+4
µÄͼÏóÓÐÁ½¸ö²»Í¬µÄ½»µã£¬µ±Ö±Ïß¹ý£¨-4£¬0£©Ê±£¬m=-4£»
Ö±ÏßÓëÅ×ÎïÏßÏàÇÐʱm=-
17
4
£¬¡àm¡Ê(-
17
4
£¬-4]
£®
ÈôËüÊÇ¡°ºÍг¡±º¯Êý£¬Ôò±Ø¾ß±¸·½³Ìx=
x+4
+m
ÓÐÁ½¸ö²»ÏàͬµÄʵÊý½â£¬
¼´·½³Ìx2-£¨2m+1£©x+m2-4=0ÓÐÁ½¸ö²»Í¬µÄʵÊý½âÇÒͬʱ´óÓÚ»òµÈÓÚ-4ºÍm£®
ÈôÁîh£¨x£©=x2-£¨2m+1£©x+m2-4£¬
Ôò
¡÷£¾0
2m+1
2
£¾-4
h(-4)¡Ý0
x¡Ým
⇒m¡Ê(-
17
4
£¬-4]
£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²é¡°ºÍг¡±º¯ÊýµÄ¶¨Òå¼°Ó¦Óã¬ÕýÈ·Àí½â¡°ºÍг¡±º¯ÊýµÄ¶¨ÒåÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚ¶¨ÒåÓòΪDµÄº¯Êýy=f£¨x£©£¬Èç¹û´æÔÚÇø¼ä[m£¬n]⊆D£¬Í¬Ê±Âú×㣺
¢Ùf£¨x£©ÔÚ[m£¬n]ÄÚÊǵ¥µ÷º¯Êý£»
¢Úµ±¶¨ÒåÓòÊÇ[m£¬n]ʱ£¬f£¨x£©µÄÖµÓòÒ²ÊÇ[m£¬n]£®Ôò³Æ[m£¬n]ÊǸú¯ÊýµÄ¡°ºÍгÇø¼ä¡±£®
£¨1£©ÇóÖ¤£ºº¯Êýy=g(x)=3-
5
x
²»´æÔÚ¡°ºÍгÇø¼ä¡±£®
£¨2£©ÒÑÖª£ºº¯Êýy=
(a2+a)x-1
a2x
£¨a¡ÊR£¬a¡Ù0£©ÓС°ºÍгÇø¼ä¡±[m£¬n]£¬µ±a±ä»¯Ê±£¬Çó³ön-mµÄ×î´óÖµ£®
£¨3£©Ò×Öª£¬º¯Êýy=xÊÇÒÔÈÎÒ»Çø¼ä[m£¬n]ΪËüµÄ¡°ºÍгÇø¼ä¡±£®ÊÔÔÙ¾ÙÒ»ÀýÓС°ºÍгÇø¼ä¡±µÄº¯Êý£¬²¢Ð´³öËüµÄÒ»¸ö¡°ºÍгÇø¼ä¡±£®£¨²»ÐèÖ¤Ã÷£¬µ«²»ÄÜÓñ¾ÌâÒÑÌÖÂÛ¹ýµÄy=x¼°ÐÎÈçy=
bx+c
ax
µÄº¯ÊýΪÀý£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚ¶¨ÒåÓòΪDµÄº¯Êýf£¨x£©£¬Èô´æÔÚÇø¼äM=[a£¬b]⊆D£¨a£¼b£©£¬Ê¹µÃ{y|y=f£¨x£©£¬x¡ÊM}=M£¬Ôò³ÆÇø¼äMΪº¯Êýf£¨x£©µÄ¡°µÈÖµÇø¼ä¡±£®¸ø³öÏÂÁÐÈý¸öº¯Êý£º
¢Ùf(x)=(
12
)x
£»   ¢Úf£¨x£©=x3£»    ¢Ûf£¨x£©=log2x+1
Ôò´æÔÚ¡°µÈÖµÇø¼ä¡±µÄº¯ÊýµÄ¸öÊýÊÇ
2
2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚ¶¨ÒåÓòΪDµÄº¯Êýy=f£¨x£©£¬ÈôͬʱÂú×ãÏÂÁÐÌõ¼þ£º¢Ùf£¨x£©ÔÚDÄÚµ¥µ÷µÝÔö»òµ¥µ÷µÝ¼õ£»¢Ú´æÔÚÇø¼ä[a£¬b]⊆D£¬Ê¹f£¨x£©ÔÚ[a£¬b]ÉϵÄÖµÓòΪ[a£¬b]£»ÄÇô°Ñy=f£¨x£©£¨x¡ÊD£©½Ð±Õº¯Êý£®
£¨1£©Çó±Õº¯Êýy=-x3·ûºÏÌõ¼þ¢ÚµÄÇø¼ä[a£¬b]£»
£¨2£©ÅжϺ¯Êýf£¨x£©=
3
4
x+
1
x
£¨x£¾0£©ÊÇ·ñΪ±Õº¯Êý£¿²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•³çÃ÷ÏØһģ£©¶¨Ò壺¶ÔÓÚ¶¨ÒåÓòΪDµÄº¯Êýf£¨x£©£¬Èç¹û´æÔÚt¡ÊD£¬Ê¹µÃf£¨t+1£©=f£¨t£©+f£¨1£©³ÉÁ¢£¬³Æº¯Êýf£¨x£©ÔÚDÉÏÊÇ¡°T¡±º¯Êý£®ÒÑÖªÏÂÁк¯Êý£º
¢Ùf£¨x£©=
1x
£»¡¡
¢Úf£¨x£©=log2£¨x2+2£©£»
¢Ûf£¨x£©=2x£¨x¡Ê£¨0£¬+¡Þ£©£©£»¡¡
¢Üf£¨x£©=cos¦Ðx£¨x¡Ê[0£¬1]£©£¬ÆäÖÐÊôÓÚ¡°T¡±º¯ÊýµÄÐòºÅÊÇ
¢Û
¢Û
£®£¨Ð´³öËùÓÐÂú×ãÒªÇóµÄº¯ÊýµÄÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸