精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=2sin(-πx+φ),x∈R(其中0≤φ≤$\frac{π}{2}$)的图象与y轴交于点(0,1).
(1)求函数f(x)的解析式及单调递增区间;
(2)设P是函数f(x)图象的最高点,M,N是函数f(x)图象上距离P最近的两个零点,求$\overrightarrow{PM}$与$\overrightarrow{PN}$的夹角的余弦值.

分析 (1)把(0,1)代入已知函数解析式可得φ值,可得f(x)=2sin(πx-$\frac{π}{6}$),解不等式2kπ+$\frac{π}{2}$≤πx-$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$可得单调递增区间;
(2)分别令πx-$\frac{π}{6}$=π,$\frac{3}{2}$π和2π,可得P、M、N坐标,由向量的夹角公式可得.

解答 解:(1)把(0,1)代入已知函数解析式可得1=2sinφ,
∵0≤φ≤$\frac{π}{2}$,∴φ=$\frac{π}{6}$,
∴f(x)=2sin(-πx+$\frac{π}{6}$)=-2sin(πx-$\frac{π}{6}$),
由2kπ+$\frac{π}{2}$≤πx-$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$可解得2k+$\frac{2}{3}$≤x≤2k+$\frac{5}{3}$(k∈Z),
∴函数的单调递增区间为[2k+$\frac{2}{3}$,2k+$\frac{5}{3}$](k∈Z);
(2)由(1)可得f(x)=-2sin(πx-$\frac{π}{6}$),
令πx-$\frac{π}{6}$=π可解得x=$\frac{7}{6}$,
令πx-$\frac{π}{6}$=$\frac{3}{2}$π可解得x=$\frac{5}{3}$,
令πx-$\frac{π}{6}$=2π可解得x=$\frac{13}{6}$,
故可取P($\frac{5}{3}$,2),M($\frac{7}{6}$,0),N($\frac{13}{6}$,0),
∴$\overrightarrow{PM}$=(-$\frac{1}{2}$,-2),$\overrightarrow{PN}$=($\frac{1}{2}$,-2),
设$\overrightarrow{PM}$与$\overrightarrow{PN}$的夹角为α,
则cosα=$\frac{-\frac{1}{2}×\frac{1}{2}+(-2)×(-2)}{\sqrt{(-\frac{1}{2})^{2}+(-2)^{2}}•\sqrt{(\frac{1}{2})^{2}+(-2)^{2}}}$=$\frac{15}{17}$.

点评 本题考查正弦函数的图象,涉及单调性和向量的夹角公式,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.写出下列命题的“¬p”命题,并判断它们的真假.
(1)p:?x,x2+4x+4≥0.
(2)p:?x0,${x}_{0}^{2}$-4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x||x-1|<1},B={(x,y)|y=$\sqrt{1-3x}$},则A∩B=(  )
A.[0,2)B.(0,$\frac{1}{3}$)C.D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设f(x)和g(x)是定义在R上的两个函数,其中f(x)是偶函数.对于任意实数x1,x2,不等式|f(x1)-f(x2)|≥|g(x1)-g(x2)|恒成立.
(1)判断函数g(x)的奇偶性:
(2)若g(x+2)是奇函数,且g(0)=2015,求g(2016)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=-\frac{\sqrt{2}}{2}t+2}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),以原点O为极点,x轴张半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=asinθ.
(Ⅰ)若a=2,求圆C的直角坐标方程与直线l的普通方程;
(Ⅱ)设直线l截圆C的弦长等于圆C的半径长的$\sqrt{2}$倍,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=$\sqrt{x-1}+{log_3}(4-x)$的定义域是(  )
A.B.(1,4)C.[1,4)D.(-∞,1)∪[4,+∞]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.式子$\frac{lo{g}_{8}27}{lo{g}_{2}3}$的值为(  )
A.1B.$\frac{3}{2}$C.$\frac{2}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.圆${C_1}:{x^2}+{y^2}=1$与圆${C_2}:(x-3{)^2}+(y-4{)^2}=25-m$(m<25)外切,则m=(  )
A.21B.19C.9D.-11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设集合A={x|1≤x≤6,x∈N},对于A的每个非空子集,定义其“交替和”如下:把集合中的数按从大到小的顺序排列,然后从最大的数开始交替地加减各数(如:{1,2,5}的“交替和”是5-2+1=4,{6,3}的“交替和”就是6-3=3,{3}的“交替和”就是3).则集合A的所有这些“交替和”的总和为(  )
A.128B.192C.224D.256

查看答案和解析>>

同步练习册答案