【题目】已知f(x)= .
(1)若f(x)>k的解集为{x|x<﹣3或x>﹣2},求k的值;
(2)若对任意x>0,f(x)≤t恒成立,求实数t的取值范围.
科目:高中数学 来源: 题型:
【题目】已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点。
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在平行于OA的直线,使得直线与椭圆C有公共点,且直线OA与的距离等于4?若存在,求出直线的方程;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥D﹣ABC中,已知△BCD是正三角形,平面ABC⊥平面BCD,AB=BC=a,AC= a,E为BC的中点,F在棱AC上,且AF=3FC.
(1)求三棱锥D﹣ABC的体积;
(2)求证:AC⊥平面DEF;
(3)若M为DB中点,N在棱AC上,且CN= CA,求证:MN∥平面DEF.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆: ,直线与
圆相切,且直线: 与椭圆:
相交于两点, 为原点。
(1)若直线过椭圆的左焦点,且与圆交于
两点,且,求直线的方程;
(2)如图,若的重心恰好在圆上,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(13分)如图,椭圆经过点,离心率,直线l的方程为.
(1)求椭圆C的方程;
(2)是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记、、的斜率分别为、、.问:是否存在常数,使得? 若存在,求的值; 若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线,直线经过点与相交于、两点.
(1)若且,求证: 必为的焦点;
(2)设,若点在上,且的最大值为,求的值;
(3)设为坐标原点,若,直线的一个法向量为,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某经销商从外地水产养殖厂购进一批小龙虾,并随机抽取40只进行统计,按重量分类统计结果如下图:
(1)记事件为:“从这批小龙虾中任取一只,重量不超过35的小龙虾”,求的估计值;
(2)若购进这批小龙虾100千克,试估计这批小龙虾的数量;
(3)为适应市场需求,了解这批小龙虾的口感,该经销商将这40只小龙虾分成三个等级,如下表:
等级 | 一等品 | 二等品 | 三等品 |
重量() |
按分层抽样抽取10只,再随机抽取3只品尝,记为抽到二等品的数量,求抽到二级品的期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com