精英家教网 > 高中数学 > 题目详情
1.给出以下命题:
①若cos<$\overrightarrow{MN}$,$\overrightarrow{PQ}$>=-$\frac{1}{3}$,则异面直线MN与PQ所成角的余弦值为-$\frac{1}{3}$;
②若平面α与β的法向量分别是$\overrightarrow a=(2,4,-3)$与$\overrightarrow b=(-1,2,2)$,则平面α⊥β;
③已知A、B、C三点不共线,点O为平面ABC外任意一点,若点M满足$\overrightarrow{OM}=\frac{1}{5}\overrightarrow{OA}+\frac{4}{5}\overrightarrow{OB}+\frac{2}{5}\overrightarrow{BC}$,则点M∈平面ABC;
④若向量$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$是空间的一个基底,则向量$\overrightarrow a+\overrightarrow b+\overrightarrow c$、$\overrightarrow a+\overrightarrow b$、$\overrightarrow c$也是空间的一个基底;
则其中正确的命题个数是(  )
A.1B.2C.3D.4

分析 由两条异面直线所成的角的取值范围可以判断①,由平面向量数量积的运算可以判断②,在空间,点M在平面ABC内的充要条件是存在α、β、γ,使$\overrightarrow{OM}$=α$\overrightarrow{OA}$+β $\overrightarrow{OB}$+γ$\overrightarrow{OC}$且α+β+γ=1可以判断③,由三个向量非零不共线可以判断④,从而可得到正确的命题个数.

解答 解:对于①:∵两条异面直线所成的角的取值范围是(0°,90°],
∴异面直线MN与PQ所成角的余弦值不能为负值,故①不正确;
对于②:∵$\overrightarrow{a}$•$\overrightarrow{b}$=(2,4,-3)(-1,2,2)=-2+8-6=0,
∴$\overrightarrow{a}$⊥$\overrightarrow{b}$.∴平面α与平面β垂直,故②正确;
对于③:∵$\overrightarrow{OM}=\frac{1}{5}\overrightarrow{OA}+\frac{4}{5}\overrightarrow{OB}+\frac{2}{5}\overrightarrow{BC}$,且$\frac{1}{5}+\frac{4}{5}+\frac{2}{5}=\frac{7}{5}≠1$
∴M点不在平面ABC内,故③不正确;
对于④:∵向量$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$是空间的一个基底,则向量$\overrightarrow a+\overrightarrow b+\overrightarrow c$、$\overrightarrow a+\overrightarrow b$、$\overrightarrow c$也是空间的一个基底,∵三个向量非零不共线,故④正确.
∴其中正确的命题个数是:2.
故选:B.

点评 本题考查了命题的真假判断与应用,考查了两条异面直线所成的角的取值范围以及平面向量数量积的运算,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知a=log2.10.3,b=log0.20.3,c=0.2-3.1,则a,b,c的大小关系(  )
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|-1<x<5},B={x|x2≥4},则∁R(A∪B)=(  )
A.(-2,-1)B.(2,5)C.(-2,-1]D.(-∞,2)∪[5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知定义在R上的函数f(x)满足f(x+2)=f(x),且f(cosθ)=cos2θ,则f(2017)=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.一个圆锥被过顶点的平面截去了较少的一部分几何体,余下的几何体的三视图如图,则余下部分的几何体的体积为(  )
A.$\frac{8π}{3}$+$\sqrt{15}$B.$\frac{16π}{3}$+$\sqrt{3}$C.$\frac{8π}{3}$+$\frac{2\sqrt{3}}{3}$D.$\frac{16π}{9}$+$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设p:实数x满足x2-4ax+3a2<0(其中a>0),q:2<x≤3.若p是q的必要不充分条件,则实数a的取值范围是(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.广安市2015年每个月平均气温(摄氏度)数据茎叶图如图,则这组数据的中位数、众数分别是(  )
A.20;23B.21.5;20,23C.20;20,23D.21.5;23

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知数列{an}的前n项和Sn=2n-1,则数列{log2an}的前10项和等于(  )
A.1023B.55C.45D.35

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知$f(x)=sin(ωx+ϕ)(ω>0,|ϕ|<\frac{π}{2})$的最小正周期为π,若其图象向左平移$\frac{π}{3}$个单位后关于y轴对称,则(  )
A.$ω=2,ϕ=\frac{π}{3}$B.$ω=2,ϕ=\frac{π}{6}$C.$ω=4,ϕ=\frac{π}{6}$D.$ω=2,ϕ=-\frac{π}{6}$

查看答案和解析>>

同步练习册答案