精英家教网 > 高中数学 > 题目详情

已知,圆,一动圆在轴右侧与轴相切,同时与圆相外切,此动圆的圆心轨迹为曲线C,曲线E是以为焦点的椭圆。

(1)求曲线C的方程;

(2)设曲线C与曲线E相交于第一象限点P,且,求曲线E的标准方程;

(3)在(1)、(2)的条件下,直线与椭圆E相交于A,B两点,若AB的中点M在曲线C上,求直线的斜率的取值范围。

 

【答案】

(1);(2)

【解析】

试题分析:(1)设动圆圆心的坐标为(x,y)(x>0),由动圆在y轴右侧与y轴相切,同时与圆F2相外切,知|CF2|-x=1,由此能求出曲线C的方程.

(2)依题意,c=1,|PF1|=,得xp=,由此能求出曲线E的标准方程.

(3)设直线l与椭圆E交点A(x1,y1),B(x2,y2),A,B的中点M的坐标为(x0,y0),将A,B的坐标代入椭圆方程中,得3(x1-x2)(x1+x2)+4(y1-y2)(y1+y2)=0,由此能够求出直线l的斜率k的取值范围

解:(1)设动圆圆心的坐标为(x,y)(x>0)

因为动圆在y轴右侧与y轴相切,同时与圆F2相外切,

所以|CF2|-x=1,…(1分)

∴(x-1)2+y2=x+1化简整理得y2=4x,曲线C的方程为y2=4x(x>0); …(3分)(2)依题意,c=1,|PF1|=,得xp=,…(4分)∴|PF2|=,又由椭圆定义得2a=|PF1|+|PF2|=4,a=2.…(5分)∴b2=a2-c2=3,所以曲线E的标准方程为

=1.…(6分)(3)设直线l与椭圆E交点A(x1,y1),B(x2,y2),A,B的中点M的坐标为(x0,y0),将A,B的坐标代入椭圆方程中,得3x12+4y12-12=0,3x22+4y22-12=0两式相减得3(x1-x2)(x1+x2)+4(y1-y2)(y1+y2)=0,∴=-,…(7分)∵y02=4x0,∴直线AB的斜率k==-y0,…(8分)由(2)知xp=,∴yp2=4xp=,∴yp由题设-<y0 (y0≠0),∴-<-y0,…(10分)即-<k<(k≠0).…(12分)

考点:曲线方程

点评:本题考查曲线方程的求法,考查直线的斜率的取值范围的求法,解题时要认真审题,注意点差法和等价转化思想的合理运用.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知一动圆P与定圆(x-1)2+y2=1和y轴都相切,
(1)求动圆圆心P的轨迹M的方程;
(2)过定点A(1,2),作△ABC,使∠BAC=90°,且动点B,C在P的轨迹M上移动(B,C不在坐标轴上),问直线BC是否过某定点?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江苏省高三12月月考文科数学试卷(解析版) 题型:解答题

如图所示,已知圆为圆上一动点,点是线段的垂直平分线与直线的交点.

(1)求点的轨迹曲线的方程;

(2)设点是曲线上任意一点,写出曲线在点处的切线的方程;(不要求证明)

(3)直线过切点与直线垂直,点关于直线的对称点为,证明:直线恒过一定点,并求定点的坐标.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年重庆市高三上学期第四次月考理科数学试卷(解析版) 题型:解答题

( 本小题满分12分)如图所示,已知圆为圆上一动点,点上,点上,且满足的轨迹为曲线

求曲线的方程;

若过定点F(0,2)的直线交曲线于不同的两点(点在点之间),且满足,求的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年云南省高三第二次月考理科数学卷 题型:解答题

(本小题满分12分)如图所示,已知圆为圆上一动点,点P在AM上,点N在CM上,且满足,点N的轨迹为曲线E。

(Ⅰ)求曲线E的方程;

(Ⅱ)若过定点F(0,2)的直线交曲线E于不同的两点G、H(点G在点F、H之间),且满足的取值范围。

 

查看答案和解析>>

同步练习册答案