精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)为奇函数,函数g(x)与f(x)的图象关于直线y=x+1对称.若g(1)=4.则f(﹣3)=

【答案】-2
【解析】解:设A(1,4),A关于直线y=x+1的对称点为A'(a,b).则 ,解得

∵函数g(x)与f(x)的图象关于直线y=x+1对称,g(1)=4,

∴f(3)=2,∵f(x)为奇函数,∴f(﹣3)=﹣2.

所以答案是﹣2.

【考点精析】根据题目的已知条件,利用函数奇偶性的性质的相关知识可以得到问题的答案,需要掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数 ,记Ik=|fk(a2)﹣fk(a1)|+|fk(a3)﹣fk(a2)|++|fk(a2016)﹣fk(a2015)|,k=1,2,则(
A.I1<I2
B.I1>I2
C.I1=I2
D.I1 , I2大小关系不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知符号函数sgn(x)= ,那么y=sgn(x3﹣3x2+x+1)的大致图象是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=axln(x+1)+x+1(x>﹣1,a∈R).
(1)若 ,求函数f(x)的单调区间;
(2)当x≥0时,不等式f(x)≤ex恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥P﹣ABCD中,底面ABCD为菱形,E为AC与BD的交点,PA⊥平面ABCD,M为PA中点,N为BC中点.
(1)证明:直线MN∥平面PCD;
(2)若点Q为PC中点,∠BAD=120°,PA= ,AB=1,求三棱锥A﹣QCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,A(﹣1,0),B(1,0),若△ABC的重心G和垂心H满足GH平行于x轴(G.H不重合),
(I)求动点C的轨迹Γ的方程;
(II)已知O为坐标原点,若直线AC与以O为圆心,以|OH|为半径的圆相切,求此时直线AC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直三棱柱ABC﹣A1B1C1的底面为正三角形,E,F分别是A1C1 , B1C1上的点,且满足A1E=EC1 , B1F=3FC1
(1)求证:平面AEF⊥平面BB1C1C;
(2)设直三棱柱ABC﹣A1B1C1的棱长均相等,求二面角C1﹣AE﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是偶函数,又在区间(0,+∞)单调递减的函数是(
A.y=﹣x3
B.y=ln|x|
C.y=cosx
D.y=2|x|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1的方程为 + =1,双曲线C2的左、右焦点分别是C1的左、右顶点,而以双曲线C2的左、右顶点分别是椭圆C1的左、右焦点.
(1)求双曲线C2的方程;
(2)记O为坐标原点,过点Q(0,2)的直线l与双曲线C2相交于不同的两点E、F,若△OEF的面积为2 ,求直线l的方程.

查看答案和解析>>

同步练习册答案