精英家教网 > 高中数学 > 题目详情
已知方程x2+y2-2(t+3)x+2(1-4t2)y+16t4+9=0(t∈R)的图形是圆.
(1)求t的取值范围;
(2)求其中面积最大的圆的方程.
分析:(1)把已知方程用配方法化为圆的标准方程,再由r2>0求出t范围;
(2)当半径最大时圆的面积最大,即求二次函数y═-7t2+6t+1的最大值,验证在对称轴的值是否取到;再代入r=
-7t2+6t+1
求出半径即可.
解答:解:(1)方程x2+y2-2(t+3)x+2(1-4t2)y+16t4+9=0,配方得
(x-t-3)2+(y+1-4t22=(t+3)2+(4t2-1)2-16t4-9
即(x-t-3)2+(y+1-4t22=-7t2+6t+1
∴r2=-7t2+6t+1>0,解得:-
1
7
<t<1
(2)由(1)知r=
-7t2+6t+1

∴当t=
3
7
∈(-
1
7
,1)时,r有最大值即r=
-7×(
3
7
)
2
+6×
3
7
+1
=
4
7
7

rmax=
4
7
7
,此时圆面积最大,
所对应圆的方程是(x-
24
7
)2+(y+
13
49
)2=
16
7
点评:本题考查了二元二次方程表示圆的条件和求半径的最大值,可用配方法将方程化为标准方程后,利用r2>0求出参数的范围,求半径的最大值时需要验证对称轴的值是否取到.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知方程x2+y2-x+4y+m=0.
(1)若此方程表示圆,求的取值范围;
(2)若(1)中的圆的直线x+2y-1=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m;
(3)在(2)得条件下,求以MN为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2+y2+kx+2y+k2=0所表示的圆有最大的面积,则直线y=(k+1)x+2的倾斜角α=
π
4
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆.
(1)求实数m的取值范围;
(2)求该圆半径r的取值范围;
(3)求圆心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2+y2+4x-2y-4=0,则x2+y2的最大值是
14+6
5
14+6
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2+y2-2mx-4y+5m=0的曲线是圆C
(1)求m的取值范围;
(2)当m=-2时,求圆C截直线l:2x-y+1=0所得弦长;
(3)若圆C与直线2x-y+1=0相交于M,N两点,且以MN为直径的圆过坐标原点O,求m的值?

查看答案和解析>>

同步练习册答案