精英家教网 > 高中数学 > 题目详情
9.7个人照相,丙在正中间,甲、乙必须相邻,有多少种排列方法.

分析 先排丙,甲、乙可以交换位置,剩下的四个男生站在剩下的四个位置,有4!种排法,即可得出结论.

解答 解:丙站好中间的位置,甲、乙必须相邻,甲乙在丙左,有两种位置,甲乙在丙右,有两种位置,共有四种选法,甲、乙可以交换位置,剩下的四个人站在剩下的四个位置,有4!种排法,所以:2×4×4!=192(种).

点评 本题考查计数原理的应用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知点P为正方形ABCD内一点,且满足∠PAB=∠PBA=15°,用坐标法证明△PCD为等边三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列叙述正确的是(  )
A.任何两个变量都可以用一元线性回归关系进行合理的描述
B.只能采用最小二乘法对一元线性回归模型进行参数估计
C.对于一个样本.用最小二乘法估计得到的一元线性回归方程参数估计值是唯一的
D.任何两个相关关系的变量经过变换后郡可以化为一元线性回归关系

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.集合M={x|x2+x-6=0},N={x|2x+7>0},试判断集合M和N的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设定义区间[-1,1]的函数f(x)=sin(πx+φ)(其中0<φ<π)是偶函数,则函数f(x)的单调减区为[0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知:tan(α+$\frac{1}{4}$β)=x+2,tan(α-$\frac{1}{4}$β)=x+1(x≥-1)
(1)当x=1时,求tan2α,tanβ的值;
(2)若对于α≠$\frac{kπ}{2}$+$\frac{π}{4}$(k∈z)的一切α,是否存在实数λ,使λ≤tan2α恒成立,若存在,求λ的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设m≠n,mn≠0,a>1,x=${(a+\sqrt{{a}^{2}-1})}^{\frac{2mn}{m-n}}$,求(${x}^{\frac{1}{n}}$+${x}^{\frac{1}{m}}$)2-4a2${x}^{\frac{1}{m}+\frac{1}{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知α∈(0,$\frac{π}{2}$),cos$α=\frac{3}{5}$.
(1)求tan2α的值;
(2)求sin(2$α+\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知集合A{x|$\sqrt{x}=\sqrt{{x}^{2}-2}$,x∈R},B={1,m},若A⊆B,求m=2.

查看答案和解析>>

同步练习册答案