精英家教网 > 高中数学 > 题目详情
4.已知向量$\overrightarrow{a}$(-2,1),$\overrightarrow{b}$=(1,-2),若m$\overrightarrow{a}$+n$\overrightarrow{b}$=(-10,8)(m,n∈R),则m+n的值为(  )
A.2B.3C.4D.5

分析 根据平面向量的坐标运算,列出方程组,求出m+n的值.

解答 解:向量$\overrightarrow{a}$(-2,1),$\overrightarrow{b}$=(1,-2),
∴m$\overrightarrow{a}$+n$\overrightarrow{b}$=(-10,8),
即(-2m+n,m-2n)=(-10,8);
∴$\left\{\begin{array}{l}{-2m+n=-10}\\{m-2n=8}\end{array}\right.$,
两式相加得-m-n=-2,
解得m+n=2.
故选:A.

点评 本题考查了平面向量的坐标运算问题,也考查了方程组的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知sin(3π-α)=$\sqrt{2}$sin(6π+β),$\sqrt{3}$cos(-α)=-$\sqrt{2}$cos(π+β),且0<α<π,0<β<π,求α和β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an},{bn}的前n项和分别为Sn,Tn,其中an=2n-1,bn=$\frac{1}{{S}_{n}}$,设计算法求T100的值,并画出程序框图及编写程序.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若直线x-2y=1,2x+y-7=0,ax-4y=5交于一点,则a=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求经过点M(2,-1)且与圆:x2+y2-2x+10y-10=0同心的圆的方程,并求此圆过点M的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知tanα=$\frac{2}{5}$,tanβ=$\frac{3}{7}$,求tan(α+β)和tan(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某校的教育教学水平不断提高,该校记录了2006年到2015年十年间每年考入清华大学、北京大学的人数和.为方便计算,2006年编号为1,2007年编号为2,…,2015年编号为10.数据如下:
年份(x)12345678910
人数(y)35811131417223031
(Ⅰ)从这10年中的后6年随机抽取两年,求考入清华大学、北京大学的人数和至少有一年多于20人的概率;
(Ⅱ)根据前5年的数据,利用最小二乘法求出y关于x的回归方程y=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,并计算2013年的估计值和实际值之间的差的绝对值.
$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知三棱锥P-ABC中,PA=PB=PC=4,且PA、PB、PC两两垂直,若此三棱锥的四个顶点都在球面上,则这个球的体积为32$\sqrt{3}$πcm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.将二进制数10001(2)化为五进制数为(  )
A.32(5)B.23(5)C.21(5)D.12(5)

查看答案和解析>>

同步练习册答案