精英家教网 > 高中数学 > 题目详情

【题目】定义在R上的函数f(x)满足:f′(x)>1﹣f(x),f(0)=3,f′(x)是f(x)的导函数,则不等式exf(x)>ex+2(其中e为自然对数的底数)的解集为(
A.{x|x>0}
B.{x|x<0}
C.{x|x<﹣1或x>1}
D.{x|x<﹣1或0<x<1}

【答案】A
【解析】解:设g(x)=exf(x)﹣ex , (x∈R),
则g′(x)=exf(x)+exf′(x)﹣ex=ex[f(x)+f′(x)﹣1],
∵f′(x)>1﹣f(x),
∴f(x)+f′(x)﹣1>0,
∴g′(x)>0,
∴y=g(x)在定义域上单调递增,
∵exf(x)>ex+2,
∴g(x)>2,
又∵g(0)=e0f(0)﹣e0=3﹣1=2,
∴g(x)>g(0),
∴x>0,
∴不等式的解集为(0,+∞)
故选:A.
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数y=ax , x∈[﹣1,2]的最大值与函数f(x)=x2﹣2x+3的最值相等,则a的值为(
A.
B. 或2
C. 或2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨),一位居民的月用水量不超过的部分按平价收费,超过的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照 分成9组,制成了如图所示的频率分布直方图.

(Ⅰ)求直方图中的值;

(Ⅱ)若将频率视为概率,从该城市居民中随机抽取3人,记这3人中月均用水量不低于3吨的人数为,求的分布列与数学期望.

(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值(精确到0.01),并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且 =2csinA
(1)确定角C的大小;
(2)若c= ,且△ABC的面积为 ,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知 =(2,1), =(1,7), =(5,1),设Z是直线OP上的一动点.

(1)求使 取最小值时的
(2)对(1)中求出的点Z,求cos∠AZB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC A1B1C1中,DE分别为ABBC的中点,点F在侧棱B1B上,且B1DA1FA1C1A1B1

(1) 求证:直线DE∥平面A1C1F

(2) 求证:平面B1DE⊥平面A1C1F

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列叙述正确的个数是(
①若a>b,则ac2>bc2
②若命题p为真命题题,命题q为假命题,则p∨q为假命题;
③若命题p:x0∈R,x ﹣x0+1≤0,则¬p:x∈R,x2﹣x+1>0.
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,底面是直角梯形,,上的点.

(1)求证: 平面平面

(2)若的中点,且二面角的余弦值为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a=﹣2 sin(x+ )dx,求二项式(x2+ 5的展开式中x的系数及展开式中各项系数之和.

查看答案和解析>>

同步练习册答案