精英家教网 > 高中数学 > 题目详情
复数加减法的几何意义是什么?它有什么作用?

思路:复数加减法的几何意义是通过图形来传达的,所以要转移到与之有关的向量的运算法则来解释.

探究:设复数z1,z2对应的向量为,则由向量加减法的运算法则,z1,z2的和与差分别与以为邻边的平行四边形的两条对角线所在的向量对应.它的作用就是把复数问题几何化,从而直观地来理解复数并应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下面给出了关于复数的几个类比推理:
①复数的加减法运算可以类比多项式的加减法运算法则;
②由向量
a
的性质|
a
|2=
a
2
类比得到复数z的性质|z|2=z2
③由向量加法的几何意义可以类比得到复数加法的几何意义.
其中类比错误的是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下面给出了关于复数的三种类比推理:
①复数的加减法运算法则可以类比多项式的加减法运算法则;
②由向量a的性质|
a
|2 =
a
2 类比复数z的性质|z|2=z2
③由向量加法的几何意义可以类比得到复数加法的几何意义.
其中类比错误的是(  )
A、①③B、①②C、②D、③

查看答案和解析>>

科目:高中数学 来源: 题型:

下面给出了关于复数的四种类比推理:
①复数的加减法运算可以类比多项式的加减法运算法则;
②由向量a的性质|
a
|2=
a
2类比得到复数z的性质|z|2=z2
③方程ax2+bx+c=0(a,b,c⊆R)有两个不同实数根的条件是b2-4ac>0可以类比得到:方程az2+bz+c=0(a,b,c⊆C)有两个不同复数根的条件是b2-4ac>0;
④由向量加法的几何意义可以类比得到复数加法的几何意义.
其中类比错误的是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列是关于复数的类比推理:
①复数的加减法运算可以类比多项式的加减法运算法则;
②由实数绝对值的性质|x|2=x2类比得到复数z的性质|z|2=z2
③已知a,b∈R,若a-b>0,则a>b.类比得已知z1,z2∈C,若z1-z2>0,则z1>z2
④由向量加法的几何意义可以类比得到复数加法的几何意义.
其中推理结论正确的是
①④
①④

查看答案和解析>>

同步练习册答案