精英家教网 > 高中数学 > 题目详情
在三角形ABC中,a,b,c分别是角A,B,C的对边,2a=b+c,且sin2A=sinBcosC,判断三角形形状.
考点:三角形的形状判断,正弦定理
专题:解三角形
分析:由sin2A=sinBcosC结合正弦定理可得a2=bc,又2a=b+c,由联立可解得b=c,从而可判断△ABC为等腰三角形.
解答: 解:∵sin2A=sinBcosC,结合正弦定理可得:a2=bc,①
又∵2a=b+c,②
∴由①②联立可解得:
(a+c)2
4
=bc,
∴解得:(b-c)2=0,
∴可得:b=c.
即有△ABC为等腰三角形.
点评:本题主要考察了正弦定理在解三角形中的应用,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线x2-y2=1,点A是它的左顶点,c是它的半焦距,点B(c2,0),点P是双曲线右支上的点,且满足AP⊥BP,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平行四边形ABCD中,对角线AC与BD交于点O,若
AB
+
AD
=λ
AO
,则实数λ等于(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方体ABCD-A1B1C1D1的棱长为2,点E是正方形BCC1B1的中心,点F,G分别是棱C1D1,DD1的中点.设点E1是点E在平面DCC1D1内的正投影.
(1)证明:直线FG⊥平面FEE1
(3)求异面直线E1G与EA所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1,对角线A1C与平面BDC1交于点O.AC、BD交于点M、E为AB的中点,F为AA1的中点,
求证:(1)C1、O、M三点共线
(2)E、C、D1、F四点共面
(3)CE、D1F、DA三线共点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线y=x3+4
(1)求曲线在P(2,12)处的切线方程;
(2)求曲线过点P(2,4)的切线方程;
(3)求斜率为1的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)满足:(Ⅰ)函数f(x)的定义域是R;(Ⅱ)对任意x1,x2∈R,有f(x1+x2)+f(x1-x2)=2f(x1)f(x2);(Ⅲ)f(1)=
3
2
,则下列命题正确的是
 
(只写出所有正确命题的序号)
①函数f(x)是奇函数;
②函数f(x)是偶函数;
③对任意n1,n2∈N,若n1<n2,则f(n1)<f(n2);
④对任意x∈R,有f(x)≥-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=x2-3x在点P处的切线平行于x轴,则点P的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(2,-1),
b
=(-1,3),
c
=(7,-11),且
c
=x
a
-y
b
,求实数x,y的值.

查看答案和解析>>

同步练习册答案