精英家教网 > 高中数学 > 题目详情
18.已知二次函数f(x)=x2+2mx+2m+1,
(1)若函数f(x)有两个零点,有一个零点在在区间(-1,0)内,另一个零点在区间(1,2)内,求m
的范围;
(2)若x∈[0,2],求f(x)的最小值.

分析 (1)结合函数的零点定理得到关于m的不等式组,基础即可;(2)先求出函数的对称轴,通过讨论m的范围,求出f(x)的最小值即可.

解答 解:(1)由条件,抛物线f(x)=x2+2mx+2m+1与x轴的交点分别在区间(-1,0)和(1,2)内,
如图(1)所示,

得$\left\{\begin{array}{l}f(0)=2m+1<0\\ f(-1)=2>0\\ f(1)=4m+2<0\\ f(2)=6m+5>0\end{array}\right.$…(3分)
⇒$\left\{\begin{array}{l}{m<-\frac{1}{2}}\\{m∈R}\\{m<-\frac{1}{2}}\\{m>-\frac{5}{6}}\end{array}\right.$即-$\frac{5}{6}$<m<-$\frac{1}{2}$.故m的取值范围是(-$\frac{5}{6}$,-$\frac{1}{2}$).…(6分)
(2)f(x)=x2+2mx+2m+1,x∈[0,2]的对称轴是x=-m,…(7分)
①当-m≤0时,即m≥0时,f(x)min=f(0)=2m+1
②当0<-m≤2时,即-2≤m<0时,$f{(x)_{min}}=f(-m)=-{m^2}+2m+1$
③当-m>2时,即m<-2时,f(x)min=f(2)=6m+5…(11分)
综上:$f{(x)_{min}}=\left\{\begin{array}{l}2m+1,(m≥0)\\-{m^2}+2m+1,(-2≤m<0)\\ 6m+5,(m<-2)\end{array}\right.$…(13分)

点评 本题考查了函数的零点问题,考查二次函数的性质,分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.下面说法正确的是(  )
A.平面内的任意两个向量都共线B.空间的任意三个向量都不共面
C.空间的任意两个向量都共面D.空间的任意三个向量都共面

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若非空集合M是集合N的真子集,则“a∈M或a∈N”是“a∈M∩N”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.即不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.心理学家分析发现视觉和空间想象力与性别有关,某数学兴趣小组为了验证这个结论,按分层抽样的方法从数学兴趣小组中抽取59名同学(男30女20),给这些同学每人一道几何题和一道代数题,让每名同学自由选择一道题解答,则选题情况如表所示.
几何题代数题总计
男同学22830
女同学81220
总计302050
(1)能否根据此判断有97.5%的把握认为视觉和空间想象力与性别有关?
(2)现从选择做几何题的8名女同学(包括甲、乙)中任意抽取2名,对这2名女同学的答题情况进行研究,记甲、乙2名女同学被抽到的人数为X,求X的分布列及数学期望E(X).
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.斜率为1的直线l过椭圆$\frac{{x}^{2}}{4}$+y2=1的右焦点,交椭圆与AB两点,求弦长AB,及三角形OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow a$=(1,-1),则下列向量中与$\overrightarrow a$的夹角最小的是(  )
A.(1,0)B.(-1,1)C.(0,1)D.(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求以双曲线-3x2+y2=12的焦点为顶点,顶点为焦点的椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若x1,x2是函数f(x)=x2-ax+b(a>0,b>0)的两个不同的零点,且x1,-2,x2成等比数列,若这三个数重新排序后成等差数列,则a+b的值等于(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.数列{an}是等差数列,若$\frac{a_9}{a_8}<-1$,且它的前n项和Sn有最大值,那么当Sn取得最小正值时,n等于(  )
A.17B.16C.15D.14

查看答案和解析>>

同步练习册答案