分析 此题考察函数的求导和利用导数研究函数单调性.(1)可由公式求导,得出a和b的关系式.(2)求导,根据f′(x)的符号,进而确定f(x)的单调区间:f′(x)>0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)<0,则f(x)在对应区间上是减函数,对应区间为减区间.该题又用到二次函数的知识分类讨论.
解答 解:(1)由f′(x)=x2+2ax+b,
∴f′(-1)=1-2a+b=0
∴b=2a-1
(2)f(x)=x3+ax2+(2a-1)x,
∴f′(x)=x2+2ax+2a-1
=(x+1)(x+2a-1)
令f′(x)=0,得x=-1或x=1-2a
①当a>1时,1-2a<-1
当x变化时,根据f′(x)与f(x)的变化情况得,
函数f(x)的单调增区间为(-∞,1-2a)和(-1,+∞),单调减区间为(1-2a,-1)
②当a=1时,1-2a=-1,此时有f′(x)≥0恒成立,且仅在x=-1处f′(x)=0,故函数f(x)的单调增区间为R、
③当a<1时,1-2a>-1,同理可得,函数f(x)的单调增区间为(-∞,-1)和(1-2a,+∞),
单调减区间为(-1,1-2a)
综上:当a>1时,函数f(x)的单调增区间为(-∞,1-2a)和(-1,+∞),单调减区间为(1-2a,-1);
当a=1时,函数f(x)的单调增区间为R;
当a<1时,函数f(x)的单调增区间为(-∞,-1)和(1-2a,+∞),单调减区间为(-1,1-2a)
点评 此题是常规题型,难点是通过f′(x)的符号,确定f(x)的单调区间
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 关于点($\frac{5π}{12}$,0)对称 | B. | 关于直线x=$\frac{5π}{12}$对称 | ||
C. | 关于点($\frac{π}{12}$,0)对称 | D. | 关于直线x=$\frac{π}{12}$对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 所有的实数x都能使x+$\frac{1}{x}$≥2成立 | |
B. | 存在一个实数x使不等式x2-2x+3<0成立 | |
C. | 如果x、y 是实数,那么“xy>0”是“|x+y|=|x|+|y|”的充分但不必要条件 | |
D. | 命题甲:“a、b、c”成等差数列”是命题乙:“$\frac{a}{b}+\frac{c}{b}$=2”的充要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com