精英家教网 > 高中数学 > 题目详情

【题目】1)若,是不等式成立的必要不充分条件,求实数的取值范围;

2)已知集合.若“”是“”的充分条件,求实数的取值范围;

3)已知命题“”的否定为假命题,求实数的取值范围.

【答案】(1)(2)(3).

【解析】

1)根据题意,进而分离参数,由命题之间的关系,即可求得结果;

2)根据“”是“”的充分条件,得到集合之间的包含关系,再根据集合之间的关系求参数范围即可;

(3)根据命题的真假,由恒成立问题分离参数,求参数的范围即可.

1)若,即

,容易知其为单调增函数;

根据题意不等式成立,则一定有

也即一定可得到.

因为

满足题意.

2)因为

求函数的值域,即可得

因为“”是“”的充分条件,

故可得集合是集合的真子集,

故只需满足:

解得.

3)因为命题“”的否定为假命题

恒成立,

即可得恒成立.

故只需即可,

解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂产生的废气经过过滤后排放,规定排放时污染物的残留含量不得超过1%.已知在过滤过程中的污染物的残留数量P(单位:毫克/升)与过滤时间t(单位:小时)之间的函数关系为:为正常数,为原污染物数量).若前5个小时废气中的污染物被过滤掉了90%,那么要能够按规定排放废气,至少还需要过滤(

A. 小时B. 小时C. 5小时D. 小时

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题:关于的不等式无解;命题:指数函数上的增函数.

(1)若命题为真命题,求实数的取值范围;

(2)若满足为假命题且为真命题的实数取值范围是集合,集合,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】影响消费水平的原因很多,其中重要的一项是工资收入.研究这两个变量的关系的一个方法是通过随机抽样的方法,在一定范围内收集被调查者的工资收入和他们的消费状况.下面的数据是某机构收集的某一年内上海、江苏、浙江、安徽、福建五个地区的职工平均工资与城镇居民消费水平(单位:万元).

地区

上海

江苏

浙江

安徽

福建

职工平均工资

9.8

6.9

6.4

6.2

5.6

城镇居民消费水平

6.6

4.6

4.4

3.9

3.8

(1)利用江苏、浙江、安徽三个地区的职工平均工资和他们的消费水平,求出线性回归方程,其中

(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过1万,则认为得到的线性回归方程是可靠的,试问所得的线性回归方程是否可靠?(的结果保留两位小数)

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥A-BCDE中,平面BCDE,底面BCDE为直角梯形,FAC上一点,且.

1)求证:平面ADE

2)求异面直线ABDE所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{}的前n项和为Sn,,且对任意的n∈N*,n≥2都有

(1)若0,,求r的值;

(2)数列{}能否是等比数列?说明理由;

(3)当r=1时,求证:数列{}是等差数列。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若存在实数,使得,求正实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某“双一流”大学专业奖学金是以所学专业各科考试成绩作为评选依据,分为专业一等奖学金(奖金额元)、专业二等奖学金(奖金额元)及专业三等奖学金(奖金额元),且专业奖学金每个学生一年最多只能获得一次.图(1)是统计了该校名学生周课外平均学习时间频率分布直方图,图(2)是这名学生在年周课外平均学习时间段获得专业奖学金的频率柱状图.

(Ⅰ)求这名学生中获得专业三等奖学金的人数;

(Ⅱ)若周课外平均学习时间超过小时称为“努力型”学生,否则称为“非努力型”学生,列联表并判断是否有的把握认为该校学生获得专业一、二等奖学金与是否是“努力型”学生有关?

(Ⅲ)若以频率作为概率,从该校任选一名学生,记该学生年获得的专业奖学金额为随机变量,求随机变量的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在中老年人群体中,肠胃病是一种高发性疾病某医学小组为了解肠胃病与运动之间的联系,调查了50位中老年人每周运动的总时长(单位:小时),将数据分成[04),[48),[814),[1416),[1620),[2024]6组进行统计,并绘制出如图所示的柱形图.

图中纵轴的数字表示对应区间的人数现规定:每周运动的总时长少于14小时为运动较少.

每周运动的总时长不少于14小时为运动较多.

1)根据题意,完成下面的2×2列联表:

有肠胃病

无肠胃病

总计

运动较多

运动较少

总计

2)能否有99.9%的把握认为中老年人是否有肠胃病与运动有关?

附:K2na+b+c+d

PK2k

0.0.50

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

同步练习册答案