精英家教网 > 高中数学 > 题目详情
15.圆C的半径为$\sqrt{13}$,且与直线2x+3y-10=0切于点P(2,2).
(1)求圆C的方程;
(2)若原点不在圆C的内部,且圆x2+y2=m与圆C相交,求实数m的取值范围.

分析 (1)设圆心坐标为(x,y),利用半径为$\sqrt{13}$,且与直线2x+3y-10=0切于点P(2,2),建立方程组,求出圆心坐标,即可求得圆的方程.
(2)原点不在圆C的内部,则圆的方程为(x-5)2+(y-4)2=13,圆x2+y2=m与圆C相交,建立不等式,即可求实数m的取值范围.

解答 解:(1)设圆心坐标为(x,y),则$\left\{\begin{array}{l}{\frac{y-2}{x-2}•(-\frac{2}{3})=-1}\\{(x-2)^{2}+(y-2)^{2}=13}\end{array}\right.$,
∴x=0,y=-1或x=5,y=4,
∴圆的方程为x2+(y+1)2=13或(x-5)2+(y-4)2=13.
(2)原点不在圆C的内部,则圆的方程为(x-5)2+(y-4)2=13,
∵圆x2+y2=m与圆C相交,
∴|$\sqrt{m}$-$\sqrt{13}$|<$\sqrt{{5}^{2}+{4}^{2}}$<$\sqrt{m}$+$\sqrt{13}$,
∴54-2$\sqrt{533}$<m<54+2$\sqrt{533}$.

点评 本题考查圆的方程,考查圆与圆的位置关系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.设m,n是两条不同的直线,α,β,γ是三个不同的平面,则下面结论中正确的是(  )
A.若α⊥γ,β⊥γ,则α∥βB.若m⊥n,m⊥α,n∥β,则α∥β
C.若m⊥α,m⊥β,则α∥βD.若m∥n,m∥α,n∥β,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图是一梯形OABC的直观图.其直观图面积为S,求梯形OABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求函数y=acosx+b(a<0)的最大值与最小值及相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.点A(2,-1)与B(4,3)的中点坐标是(3,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.P为抛物线y2=2px的焦点弦AB的中点,A,B,P三点到抛物线准线的距离分别是|AA1|,|BB1|,|PP1|,则有(  )
A.|PP1|=|AA1|+|BB1|B.|PP1|=$\frac{1}{2}$|AB|C.|PP1|>$\frac{1}{2}$|AB|D.|PP1|$<\frac{1}{2}$|AB|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.为了整顿道路交通秩序,某地考虑对行人闯红灯进行处罚,为更加详细闯红灯人数的作用,在某一个路口进行了五天试验,得到当天的处罚金额与当天闯红灯人数
当天处罚金额x(单位:元)05101520
当天闯红灯的人数y8050402010
(1)根据以上数据,建立当天闯红灯人数y关于当天处罚金额x的回归直线方程;
(2)根据统计数据,上述路口每天经过的行人约为400人,每人闯红灯的可能性相同,在行0元处罚的情况下,记甲、乙、丙三人中闯红灯的人数为X,求X的分布列和数学期望相互独立).
附:回归直线方程中系数计算公式b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\overline{{x}^{2}}}$,$\overline{a}$=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知$\overrightarrow{a}$=(λ+2,1),$\overrightarrow{b}$=(1,λ),若$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$的夹角θ∈[0,$\frac{π}{2}$),则实数λ的取值范围是[-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.证明:$\sqrt{ab}$≥$\frac{2ab}{a+b}$.

查看答案和解析>>

同步练习册答案