精英家教网 > 高中数学 > 题目详情
以椭圆
x2
16
+
y2
4
=1
内一点M(1,1)为中点的弦所在的直线方程为(  )
A、4x-3y-3=0
B、x-4y+3=0
C、4x+y-5=0
D、x+4y-5=0
分析:设直线方程为 y-1=k ( x-1),代入椭圆
x2
16
+
y2
4
=1
化简,根据 x1+x2=
-8(k - k2
4k2+1
=2,求出斜率k的值,即得所求的直线方程.
解答:解:由题意可得直线的斜率存在,设直线方程为 y-1=k ( x-1),
代入椭圆
x2
16
+
y2
4
=1
化简可得
x2
16
+
(kx-k+1)2
4
=1

(4k2+1)x2+8(k-k2 ) x+4k2-8k-12.
∴由题意可得  x1+x2=
-8(k - k2
4k2+1
=2,∴k=-
1
4

故 直线方程为  y-1=-
1
4
( x-1),即 x+4y-5=0,
故选D.
点评:本题考查直线和圆锥曲线的位置关系,一元二次方程根与系数的关系,中点公式的应用,求出直线的斜率,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以双曲线-3x2+y2=12的焦点为顶点,顶点为焦点的椭圆的方程是(  )
A、
x2
16
+
y2
12
=1
B、
x2
16
+
y2
4
=1
C、
x2
12
+
y2
16
=1
D、
x2
4
+
y2
16
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆以坐标原点为中心,坐标轴为对称轴,且椭圆以抛物线y2=16x的焦点为其一个焦点,以双曲线
x2
16
-
y2
9
=1
的焦点为顶点.
(1)求椭圆的标准方程;
(2)已知点A(-1,0),B(1,0),且C,D分别为椭圆的上顶点和右顶点,点P是线段CD上的动点,求
AP
BP
的取值范围.
(3)试问在圆x2+y2=a2上,是否存在一点M,使△F1MF2的面积S=b2(其中a为椭圆的半长轴长,b为椭圆的半短轴长,F1,F2为椭圆的两个焦点),若存在,求tan∠F1MF2的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

点P在以F1、F2为焦点的椭圆
x2
16
+
y2
9
=1
上运动,则△F1F2P的重心G的轨迹方程是
9x2
16
+y2=1
(x≠0)
9x2
16
+y2=1
(x≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆以坐标原点为中心,坐标轴为对称轴,且该椭圆以抛物线y2=16x的焦点P为其一个焦点,以双曲线
x2
16
-
y2
9
=1
的焦点Q为顶点.
(1)求椭圆的标准方程;
(2)已知点A(-1,0),B(1,0),且C、D分别为椭圆的上顶点和右顶点,点M是线段CD上的动点,求
AM
BM
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在以O为坐标原点的直角坐标系中,
OA
AB
,点A(4,-3),B点在第一象限且到x轴的距离为5.
(1) 求向量
AB
的坐标及OB所在的直线方程;
(2) 求圆(x-3)2+(y+1)2=10关于直线OB对称的圆的方程;
(3) 设直线l
AB
为方向向量且过(0,a)点,问是否存在实数a,使得椭圆
x2
16
+y2=1上有两个不同的点关于直线l对称.若不存在,请说明理由; 存在请求出实数a的取值范围.

查看答案和解析>>

同步练习册答案