精英家教网 > 高中数学 > 题目详情

【题目】已知△ABC的三个顶点A、B、C及平面内一点P满足 ,下列结论中正确的是( )
A.P在△ABC的内部
B.P在△ABC的边AB上
C.P在AB边所在直线上
D.P在△ABC的外部

【答案】D
【解析】解答:由 可得
,∴四边形PBCA为平行四边形.
可知点P在△ABC的外部.选D.
分析:本题主要考查了向量加减混合运算及其几何意义、向量的三角形法则,解决问题的关键是根据向量的加减运算及三角形法则进行化简,结合向量共线的
【考点精析】根据题目的已知条件,利用向量的三角形法则的相关知识可以得到问题的答案,需要掌握三角形加法法则的特点:首尾相连;三角形减法法则的特点:共起点,连终点,方向指向被减向量.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(x+1),g(x)=loga(1﹣x)(a>0且a≠1).
(1)求f(x)+g(x)的定义域;
(2)判断函数f(x)+g(x)的奇偶性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|x>1},B={x|x≥2}.
(1)求集合A∩(RB);
(2)若集合C={x|x﹣a>0},且满足A∩C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)为定义在[﹣1,1]上的奇函数,当x∈[﹣1,0]时,函数解析式为
(1)求f(x)在[0,1]上的解析式;
(2)求f(x)在[0,1]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (p,q为常数)是定义在(﹣1,1)上的奇函数,且
(1)求函数f(x)的解析式;
(2)判断并用定义证明f(x)在(﹣1,1)上的单调性;
(3)解关于x的不等式f(2x﹣1)+f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合U=R,A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2}.
(1)求A∩B,(UA)∪B;
(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于在区间[a,b]上有意义的两个函数f(x)和g(x),如果对于任意x∈[a,b]均有|f(x)﹣g(x)|≤1成立,则称函数f(x)和g(x)在区间[a,b]上是接近的.若f(x)=log2(ax+1)与g(x)=log2x在区[1,2]上是接近的,则实数a的取值范围是( )
A.[0,1]
B.[2,3]
C.[0,2)
D.(1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0且满足不等式22a+1>25a2
(1)求实数a的取值范围.
(2)求不等式loga(3x+1)<loga(7﹣5x).
(3)若函数y=loga(2x﹣1)在区间[1,3]有最小值为﹣2,求实数a值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的离心率为 ,以原点O为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+ =0相切.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线L:y=kx+m与椭圆C相交于A、B两点,且kOAkOB=﹣ ,求证:△AOB的面积为定值.

查看答案和解析>>

同步练习册答案