考点:等差数列的性质
专题:等差数列与等比数列
分析:当q=-1时,an+an+1=a1(-1)n-1+a1(-1)n=0,数列{an+an+1}是等差数列;q=1时,an+an+1=2a1,数列{an+an+1}既是等差数列,又是等比数列;当q≠±1时,an+an+1=a1qn-1+a1qn=a1(1+q)qn-1,数列{an+an+1}是公比为q,首项为a1(1+q)的等比数列.
解答:
解:当q=-1时,
a
n+a
n+1=
a1(-1)n-1+
a1(-1)n=0,
数列{a
n+a
n+1}是:0,0,0,…,它是等差数列;
q=1时,a
n+a
n+1=2a
1,
数列{a
n+a
n+1}是:2a
1,2a
1,2a
1,…,既是等差数列,又是等比数列;
当q≠±1时,a
n+a
n+1=
a1qn-1+a1qn=a
1(1+q)q
n-1,
数列{a
n+a
n+1}是公比为q,首项为a
1(1+q)的等比数列.
∴数列{a
n+a
n+1}是
| 等差数列,q=-1 | 既是等差数列,又是等比数列,q=1 | 等比数列,q≠±1 |
| |
.
故答案为:
| 等差数列,q=-1 | 既是等差数列,又是等比数列,q=1 | 等比数列,q≠±1 |
| |
.
点评:本题考查等差数列和等比数列的判断,是基础题,解题时要注意等差数列和等比数列的性质的合理运用.