精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若函数在其定义域内为增函数,求实数的取值范围;

(3)设函数,若在上至少存在一点,使得成立,求实数的取值范围.

【答案】(1) ;(2) .

【解析】试题分析:(1)由题意得导函数在其定义域内恒非负,再根据二次方程恒成立条件得实数的取值范围;(2)将不等式有解问题,利用参变分离法转化为对应函数最值问题,再利用导数求对应函数最值,即得实数的取值范围.

试题解析:(1)

因为函数在其定义域内为增函数,

所以 恒成立,

时,显然不成立;

时, ,要满足 时恒成立,则

.

(2)设函数

则原问题转化为在上至少存在一点,使得,即.

时,

,∴ ,则,不符合条件;

时,

,可知

单调递增, ,整理得.

综上所述, .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,椭圆的焦距为2,且过点.

(1)求椭圆的方程;

(2)若点分别是椭圆的左右顶点,直线经过点且垂直与轴,点是椭圆上异于的任意一点,直线于点.

①设直线的斜率为,直线的斜率为,求证:为定值;

②设过点垂直于的直线为 ,求证:直线过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0)的一系列对应值如下表:

x

y

﹣1

1

3

1

﹣1

1

3


(1)根据表格提供的数据求函数f(x)的一个解析式.
(2)根据(1)的结果,若函数y=f(kx)(k>0)周期为 ,当 时,方程f(kx)=m恰有两个不同的解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12分,1小问5分,2小问7分

图,椭圆的左、右焦点分别为的直线交椭圆于两点,且

1求椭圆的标准方程

2求椭圆的离心率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 若对任意的正整数n,总存在正整数m,使得Sn=am , 则称{an}是“H数列”.
(1)若数列{an}的前n项和为Sn=2n(n∈N*),证明:{an}是“H数列”;
(2)设{an}是等差数列,其首项a1=1,公差d<0,若{an}是“H数列”,求d的值;
(3)证明:对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x∈R,[x]表示不超过x的最大整数,若函数 有且仅有3个零点,则实数a的取值范围是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空间四边形ABCD中,AB=CD且异面直线AB与CD所成的角为30°,E,F为BC和AD的中点,则异面直线EF和AB所成的角为(
A.15°
B.30°
C.45°或75°
D.15°或75°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0)的一系列对应值如下表:

x

y

﹣1

1

3

1

﹣1

1

3


(1)根据表格提供的数据求函数f(x)的一个解析式.
(2)根据(1)的结果,若函数y=f(kx)(k>0)周期为 ,当 时,方程f(kx)=m恰有两个不同的解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,真命题是(
A.若 互为负向量,则 + =0
B.若 =0,则 = =
C.若 都是单位向量,则 =1
D.若k为实数且k = ,则k=0或 =

查看答案和解析>>

同步练习册答案