精英家教网 > 高中数学 > 题目详情
(2007•奉贤区一模)已知函数 f(x)=log3(3x-1),
(1)求函数f(x)的定义域;
(2)求证函数f(x)在(0,+∞)内单调递增.
(3)若f-1(x)是函数f(x)的反函数,设F(x)=f-1(2x)-f(x),求函数F(x)的最小值及对应的x值.
分析:(1)利用真数大于0,结合指数函数的单调性可求;
(2)用单调性定义证明,先任取两个变量,且界定大小,再作差变形,通过分析,与零比较,要注意变形要到位.
(3)先求反函数,再表达出F(x)=f-1(2x)-f(x),利用基本不等式可求函数的最小值.
解答:解:(1)函数 f(x)=log3(3x-1),得:3x-1>0,∴x>0
∴f(x)的定义域 是(0,+∞).
(2)设在(0,+∞)上任取x1<x2,则f(x2)-f(x1)=log3
3x2-1
3x1-1

由y=3x在定义域(0,+∞)内单调递增得:
3x2-1
3x1-1
> 1
,∴log3
3x2-1
3x1-1
>0
,∴f(x2)-f(x1)>0
∴函数f(x)在(0,+∞)内单调递增(3分)
(3)由 f(x)=log3(3x-1),得:f-1(x)=log3(3x+1),∴F(x)=f-1(2x)-f(x)=log3
32x+1
3x-1

log3(3x-1+
2
3x-1
+2)
≥log3(2
2
 +2)

当x=log3(
2
+1)
时,F(x)最小值为log3(2
2
+2)
点评:本题的考点是函数的单调性德判断及证明,主要考查了反函数、函数的值域以及函数与不等式相综合的问题,考查函数与方程的综合运用,主要涉及了用单调性的定义证明函数的单调性以及构造函数研究函数的性质等问题,还考查了转化思想和构造转化函数的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2007•奉贤区一模)若sinθ<0,且sin2θ>0,则角θ的终边所在象限是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•奉贤区一模)已知:函数f(x)=
x
ax+b
(a,b∈R,ab≠0)
f(2)=
2
3
,f(x)=x
有唯一的根.
(1)求a,b的值;
(2)数列{an}对n≥2,n∈N总有an=f(an-1),a1=1;求出数列{an}的通项公式.
(3)是否存在这样的数列{bn}满足:{bn}为{an}的子数列(即{bn}中的每一项都是{an}的项)且{bn}为无穷等比数列,它的各项和为
1
2
.若存在,找出所有符合条件的数列{bn},写出它的通项公式,并说明理由;若不存在,也需说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•奉贤区一模)若虚数z满足z+
1
z
∈R
,则|z-2i|的取值范围是
[1,
5
)∪(
5
,3]
[1,
5
)∪(
5
,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•奉贤区一模)在一个口袋里装有5个白球和3个黑球,这些球除颜色外完全相同,现从中摸出3个球,至少摸到2个黑球的概率等于
2
7
2
7
 (用分数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•奉贤区一模)Sn是等差数列{an}的前n项和,若a1>0且S19=0,则当Sn取得最大值时的n=
9或10
9或10

查看答案和解析>>

同步练习册答案