精英家教网 > 高中数学 > 题目详情
17.废品率x%和每吨生铁成本y(元)之间的回归直线方程为$\stackrel{∧}{y}$=2x+256,这表明(  )
A.y与x的相关系数为2
B.y与x的关系是函数关系
C.废品率每增加1%,生铁成本每吨大约增加2元
D.废品率每增加1%,生铁成本大约增加258元

分析 直接利用回归直线方程的性质,推出结果即可.

解答 解:由废品率x%和每吨生铁成本y(元)之间的回归直线方程为$\stackrel{∧}{y}$=2x+256,
的x增加1时,$\stackrel{∧}{y}$=2x+256+2,
可知废品率每增加1%,生铁成本每吨大约增加2元.
故选:C.

点评 本题考查回归直线方程的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,已知抛物线C:x2=2py(0<p<4),其上一点M(4,y0)到其焦点F的距离为5,过焦点F的直线l与抛物线C交于A,B左、右两点.
(Ⅰ)求抛物线C的标准方程;
(Ⅱ)若$\overrightarrow{AF}=\frac{1}{2}\overrightarrow{FB}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,且|F1F2|=2c,若椭圆上存在点M使得$\frac{a}{sin∠M{F}_{1}{F}_{2}}$=$\frac{c}{sin∠M{F}_{2}{F}_{1}}$,则该椭圆离心率的取值范围为(  )
A.(0,$\sqrt{2}$-1)B.($\frac{\sqrt{2}}{2}$,1)C.(0,$\frac{\sqrt{2}}{2}$)D.($\sqrt{2}$-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=a(\frac{1}{{{a^x}-1}}+\frac{1}{2})$,其中a>1.
(1)判断并证明函数f(x)的奇偶性;
(2)判断并证明函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若实数x,y满足$\left\{\begin{array}{l}2x-y-2≤0\\ x+y-1≥0\\ x-y+1≥0\end{array}\right.$,则z=2x-y的最小值为(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数y=x+$\frac{3}{x-2}$(x>2),当x=2+$\sqrt{3}$,函数y有最小值是2$\sqrt{3}$+2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知集合A={x|x2-5x-6≤0},B={x|x-3a<0},
(Ⅰ)当$a=\frac{1}{3}$时,求A∩B;
(Ⅱ)若A∪B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知集合A={-1,1},B={m|m=x+y,x∈A,y∈A},则用列举法表示集合B={0};若集合M={-1,1,3},N={a+2,a2+4}满足M∩N={3},则实数a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.三角形ABC中.若sin(A+B-C)=sin(A-B+C),则这个三角形的形状为等腰三角形或直角三角形.

查看答案和解析>>

同步练习册答案