精英家教网 > 高中数学 > 题目详情
12.设函数$f(x)=\left\{\begin{array}{l}\sqrt{x-1}(x>1)\\ sin\frac{πx}{2}(x≤1)\end{array}\right.$,则f[f(2)]=(  )
A.0B.1C.2D.$\sqrt{2}$

分析 直接利用分段函数求解函数值即可.

解答 解:函数$f(x)=\left\{\begin{array}{l}\sqrt{x-1}(x>1)\\ sin\frac{πx}{2}(x≤1)\end{array}\right.$,则f[f(2)]=$f[\sqrt{2-1}]=f(1)=sin\frac{π}{2}=1$,
故选:B.

点评 本题考查分段函数的应用,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{{\sqrt{5}}}{3}$,定点M(2,0),椭圆短轴的端点是B1,B2,且MB1⊥MB2
(Ⅰ)求椭圆C的方程;
(Ⅱ)设过点M且斜率不为0的直线交椭圆C于A,B两点.试问x轴上是否存在定点P,使△APB内切圆圆心的纵坐标为定值?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若函数f(x)=3x2-5x+a的两个零点分别为x1,x2.且有-2<x1<0与1<x2<3,试求出a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.椭圆kx2+8ky2=8的一个焦点为$(\sqrt{21},0)$,则k的值为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.用秦九韶算法求多项式f(x)=x6-5x5+6x4+x2+0.3x+2,当x=-2时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设等比数列{an}的前n项和为Sn,若S3+S6=S9,则公比q=(  )
A.1或-1B.1C.-1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$|{\overrightarrow a}|=4$,$|{\overrightarrow b}|=3$,($(2\overrightarrow a+\overrightarrow b)•(2\overrightarrow a-3\overrightarrow b)=61$,
(1)求$\overrightarrow a$与$\overrightarrow b$的夹角
(2)求$|{\overrightarrow a+\overrightarrow b}|$,$|{\overrightarrow a-2\overrightarrow b}|$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知四边形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F,G,H分别为BP,BE,PC的中点.
(Ⅰ)求证:平面FGH∥平面PDE;
(Ⅱ)求证:平面FGH⊥平面AEB;
(Ⅲ)在线段PC上是否存在一点M,使PB⊥平面EFM?若存在,求出线段PM的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知等差数列{an}满足a2=3,S4=14,若数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和Sn=$\frac{1007}{2016}$,则n=2014.

查看答案和解析>>

同步练习册答案