精英家教网 > 高中数学 > 题目详情
已知双曲线C1
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点分别为F1、F2,抛物线C2的顶点在原点,它的准线与双曲线C1的左准线重合,若双曲线C1与抛物线C2的交点P满足PF2⊥F1F2,则双曲线C1的离心率为(  )
A.
2
B.
3
C.
2
3
3
D.2
2
设抛物线方程为y2=2px,依题意可知
p
2
=
a2
c

∴p=2
a2
c

抛物线方程与双曲线方程联立得
x2
a2
-
2px
b2
=1
,把x=c,p=2
a2
c
,代入整理得e4-2e2-3=0
解得e2=3或-1(舍去)
∴e=
3
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

经过双曲线x2-
y2
3
=1
的左焦点F1作倾斜角为
π
6
的直线AB,分别交双曲线的左、右支为点A、B.
(Ⅰ)求弦长|AB|;
(Ⅱ)设F2为双曲线的右焦点,求|BF1|+|AF2|-(|AF1|+|BF2|)的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的一条渐近线与圆(x-
3
2+y2=1有公共点,则双曲线的离心率的取值范围是(  )
A.(1,
6
2
]
B.[
6
2
,+∞
C.[
6
3
,+∞
D.[
6
3
,1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线
y2
2
-x2=1
的焦点坐标是(  )
A.(0,±1)B.(±1,0)C.(0,±
3
D.(±
3
,0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求以椭圆3x2+13y2=39的焦点为焦点,以直线y=±
x
2
为渐近线的双曲线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

斜率为2的直线l被双曲线
x2
3
-
y2
2
=1
截得的弦长为4,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线
x2
a2
-
y2
b2
=1(a>b>0)
的两条渐近线的夹角为
π
3
,则双曲线的离心率为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线C:
x2
16
-
y2
9
=1
,以C的右焦点为圆心且与C的渐近线相切的圆的半径是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的离心率e=
5
3
,则该双曲线的一条渐近线方程为(  )
A.y=
4
3
x
B.y=
3
4
x
C.y=
4
5
x
D.y=
3
5
x

查看答案和解析>>

同步练习册答案