如图,在长方体中,已知上下两底面为正方形,且边长均为1;侧棱,为中点,为中点,为上一个动点.
(Ⅰ)确定点的位置,使得;
(Ⅱ)当时,求二面角的平面角余弦值.
(Ⅰ)为的四等分点;(Ⅱ) .
解析试题分析:(Ⅰ)用向量法的解题步骤是建立恰当的空间直角坐标系,写出相应的点的坐标及向量的坐标,利用向量的数量积为0,则这两个向量垂直,得出结论;(Ⅱ)二面角的问题,找到两个平面的法向量的夹角,利用向量的夹角公式求解.
试题解析:方法一:
(Ⅰ)如图,分别以所在直线为轴建立空间直角坐标系,则
易得 2分
由题意得,设
又
则由得,
∴,得为的四等分点. 6分
(Ⅱ)易知平面的一个法向量为,设平面的法向量为
则,得,取,得, 10分
∴,∴二面角的平面角余弦值为.12分
方法二:
(Ⅰ)∵在平面内的射影为,且四边形为正方形,为中点, ∴
同理,在平面内的射影为,则
由△~△, ∴,得为的四等分点. 6分
(Ⅱ)∵平面,过点作,垂足为;
连结,则为二面角的平面角; 8分
由,得,解得
∴在中,,
∴;∴二面角的平面角余弦值为. 12分
考点:线面垂直的判定定理,二面角,线面成角的计算.
科目:高中数学 来源: 题型:解答题
如图,AC 是圆 O 的直径,点 B 在圆 O 上,∠BAC=30°,BM⊥AC交 AC 于点 M,EA⊥平面ABC,FC//EA,AC=4,EA=3,FC=1.
(I)证明:EM⊥BF;
(II)求平面 BEF 与平面ABC 所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,PA丄平面ABCD,,,AD=AB=1,AC和BD交于O点.
(I)求证:平面PBD丄平面PAC.
(II)当点A在平面PBD内的射影G恰好是ΔPBD的重心时,求二面角B-PD-A的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图1,四棱锥中,底面,面是直角梯形,为侧棱上一点.该四棱锥的俯视图和侧(左)视图如图2所示.
(Ⅰ)证明:平面;
(Ⅱ)证明:∥平面;
(Ⅲ)线段上是否存在点,使与所成角的余弦值为?若存在,找到所有符合要求的点,并求的长;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,三棱柱A1B1C1—ABC的三视图中,正(主)视图和侧(左)视图是全等的矩形,俯视图是等腰直角三角形,点M是A1B1的中点.
(1)求证:B1C∥平面AC1M;
(2)求证:平面AC1M⊥平面AA1B1B.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com