精英家教网 > 高中数学 > 题目详情
3.已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥BC,D为PB中点,E为PC的中点,
(1)求证:BC∥平面ADE;
(2)求证:平面AED⊥平面PAB.

分析 (1)由题意和中位线的性质可得DE∥BC,由线面平行的判定定理可得;
(2)由线面垂直的判定可得BC⊥平面PAB,可得DE⊥平面PAB,由平面与平面垂直的判定定理可得.

解答 (1)证明:∵D为PB中点,E为PC的中点,
∴DE为△PBC的中位线,∴DE∥BC,
∵DE?平面ADE,BC?平面ADE,
∴BC∥平面ADE;
(2)∵PA⊥平面ABC,BC?平面ABC,
∴PA⊥BC,又BC⊥AB,PA∩AB=A,
∴BC⊥平面PAB,
由(1)可知DE∥BC,
∴DE⊥平面PAB,
又∵DE?平面ADE,
∴平面ADE⊥平面PAB

点评 本题考查平面与平面垂直的判定以及直线和平面平行的判定,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知θ为第二象限角,sinθ=$\frac{\sqrt{3}}{2}$,则tanθ等于(  )
A.$\frac{\sqrt{3}}{3}$B.-$\frac{\sqrt{3}}{3}$C.±$\frac{\sqrt{3}}{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.“10a>10b”是“lga>lgb”的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知i为虚数单位,复数z=$\frac{i}{1+\sqrt{3}?i}$,则复数$\overline{z}$=(  )
A.$\frac{\sqrt{3}}{4}$-$\frac{1}{4}$iB.$\frac{\sqrt{3}}{4}$+$\frac{1}{4}$iC.$\frac{\sqrt{3}}{2}$+$\frac{1}{2}$iD.$\frac{\sqrt{3}}{2}$-$\frac{1}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=x4-8x2+2在[-1,3]上的最大值为11.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.甲、乙两人各进行3次射击,甲每次击中目标的概率为$\frac{1}{2}$,乙每次击中目标的概率为$\frac{2}{3}$.
(1)记甲击中目标的次数为X,求X的概率分布列及数学期望E(X);
(2)求乙至多击中目标2次的概率;  
 (3)求甲恰好比乙多击中目标2次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知点O(0,0),A(1,1),直线l:x-y+1=0且点P在直线l上,则|PA|+|PO|的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若函数$f(x)=({1+\frac{1}{tanax}}){sin^2}ax-2sin({ax+\frac{π}{4}})sin({ax-\frac{π}{4}})$(a>0)的图象与直线y=m相切,相邻切点之间的距离为$\frac{π}{2}$.
(1)求m和a的值;
(2)若点A(x0,y0)是y=f(x)图象的对称中心,且x0∈[0,$\frac{π}{2}$],求点A的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.A={x|(a-2)x2-2(a-2)x-4<0},若A=R(R为实数集),则实数a的取值范围为(  )
A.(-2,2)B.(-2,+∞)C.(-2,2]D.

查看答案和解析>>

同步练习册答案