【题目】定义:如果数列的任意连续三项均能构成一个三角形的三边长,则称为三角形”数列对于“三角形”数列,如果函数使得仍为一个三角形”数列,则称是数列的“保三角形函数”.
(1)已知是首项为2,公差为1的等差数列,若,是数列的保三角形函数”,求的取值范围;
(2)已知数列的首项为2019,是数列的前项和,且满足,证明是“三角形”数列;
(3)求证:函数,是数列1,,的“保三角形函数”的充要条件是,.
【答案】(1);(2)见解析;(3)见解析.
【解析】
(1)先由条件得是三角形数列,再利用,是数列的“保三角形函数”,得到,解得的取值范围;
(2)先利用条件求出数列的通项公式,再证明其满足“三角形”数列的定义即可;
(3)根据函数,,是数列1,,的“保三角形函数”,可以得到①1,,是三角形数列,所以,即,②数列中的各项必须在定义域内,即,③,,是三角形数列;结论为在利用,是单调递减函数,就可求出对应的范围,即可证明.
(1)解:显然,对任意正整数都成立,即是三角形数列,
因为,显然有,
由得,解得,
所以当时,是数列的“保三角形函数”;
(2)证:由,
当时,,∴,∴,
当时,即,解得,∴,
∴数列是以2019为首项,以为公比的等比数列,
∴,
显然,因为,
所以是“三角形”数列;
(3)证:函数,是数列1,,的“保三角形函数”,必须满足三个条件:
①1,,是三角形数列,所以,即;
②数列中的各项必须在定义域内,即;
③,,是三角形数列,
由于,是单调递减函数,所以,解得,
所以函数,是数列1,,的“保三角形函数”的充要条件是,.
科目:高中数学 来源: 题型:
【题目】在直三棱柱ABC—A1B1C1中,CA=CB=4,,E,F分别为AC,CC1的中点,则直线EF与平面AA1B1B所成的角是
A. 30° B. 45° C. 60° D. 90°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(为常数,且),且数列是首项为,公差为的等差数列.
(1)求证:数列是等比数列;
(2)若,当时,求数列的前项和的最小值;
(3)若,问是否存在实数,使得是递增数列?若存在,求出的范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知实数x,y满足x3<y3,则下列不等式中恒成立的是( )
A. ()x>()y B. ln(x2+1)>ln(y2+1)
C. D. tanx>tany
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校兴趣小组在如图所示的矩形区域内举行机器人拦截挑战赛,在处按方向释放机器人甲,同时在处按某方向释放机器人乙,设机器人乙在处成功拦截机器人甲,若点在矩形区城内(包含边界),则挑战成功,否则挑战失败,已知米,为中点,机器人乙的速度是机器人甲的速度的2倍,比赛中两机器人均按匀速直线远动方式行进.
(1)如图建系,求的轨迹方程;
(2)记与的夹角为,,如何设计的长度,才能确保无论的值为多少,总可以通过设置机器人乙的释放角度使之挑战成功?
(3)若与的夹角为,足够长,则如何设置机器人乙的释放角度,才能挑战成功?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的内角A,B,C的对边分别为a,b,c,且asinB=bsin(A+).
(1)求A;
(2)若b,a,c成等差数列,△ABC的面积为2,求a.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在测量一根新弹簧的劲度系数时,测得了如下的结果:
所挂重量()(x) | 1 | 2 | 3 | 5 | 7 | 9 |
弹簧长度()(y) | 11 | 12 | 12 | 13 | 14 | 16 |
(1)请在下图坐标系中画出上表所给数据的散点图;
(2)若弹簧长度与所挂物体重量之间的关系具有线性相关性,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(3)根据回归方程,求挂重量为的物体时弹簧的长度.所求得的长度是弹簧的实际长度吗?为什么?
注:本题中的计算结果保留小数点后两位.
(参考公式:,)
(参考数据:,)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com