精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=$\frac{a^x}{{{a^x}+\sqrt{a}}}$(a>0),若x1+x2=1,则f(x1)+f(x2)=1_,并求出$f(\frac{1}{2016})+…f(\frac{2015}{2016})$=$\frac{2015}{2}$.

分析 由函数f(x)=$\frac{a^x}{{{a^x}+\sqrt{a}}}$(a>0),x1+x2=1,求出f(x1)+f(x2)=f(x1)+f(1-x1)=1,从而$f(\frac{1}{2016})+…f(\frac{2015}{2016})$=1007+f($\frac{1}{2}$),由此能求出结果.

解答 解:∵函数f(x)=$\frac{a^x}{{{a^x}+\sqrt{a}}}$(a>0),x1+x2=1,
∴f(x1)+f(x2)=f(x1)+f(1-x1
=$\frac{{a}^{{x}_{1}}}{{a}^{{x}_{1}}+\sqrt{a}}$+$\frac{{a}^{1-{x}_{1}}}{{a}^{1-{x}_{1}}+\sqrt{a}}$
=$\frac{{a}^{{x}_{1}}}{{a}^{{x}_{1}}+\sqrt{a}}$+$\frac{a}{a+\sqrt{a}•{a}^{{x}_{1}}}$
=$\frac{{a}^{{x}_{1}}}{{a}^{{x}_{1}}+\sqrt{a}}+\frac{\sqrt{a}}{\sqrt{a}+{a}^{{x}_{1}}}$=1,
∴$f(\frac{1}{2016})+…f(\frac{2015}{2016})$=1007+f($\frac{1}{2}$)=1007+$\frac{\sqrt{a}}{\sqrt{a}+\sqrt{a}}$=$\frac{2015}{2}$.
故答案为:1,$\frac{2015}{2}$.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知点A,B分别是椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左,右顶点,长轴长为4,离心率为$\frac{1}{2}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点P为椭圆C上除长轴顶点外的任一点,直线AP,PB与直线x=4分别交于点M,N,已知常数λ>0,求$λ\overrightarrow{PM}•\overrightarrow{PN}+\overrightarrow{PA}•\overrightarrow{PB}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.正项等差数列{an}的前n项和为Sn,已知a4+a10-a72+15=0,则S13=(  )
A.-39B.5C.39D.65

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知命题p:“?m∈R,函数f(x)=m+$\frac{1}{{{2^x}+1}}$是奇函数”,则命题?p为(  )
A.?m∈R,函数f(x)=m+$\frac{1}{{{2^x}+1}}$是偶函数B.?m∈R,函数f(x)=m+$\frac{1}{{{2^x}+1}}$是奇函数
C.?m∈R,函数f(x)=m+$\frac{1}{{{2^x}+1}}$不是奇函数D.?m∈R,函数f(x)=m+$\frac{1}{{{2^x}+1}}$不是奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.数列{an}的前n项和为Sn
(1)当{an}是等比数列,a1=1,且$\frac{1}{a_1}$,$\frac{1}{a_3}$,$\frac{1}{a_4}$-1是等差数列时,求an
(2)若{an}是等差数列,且S1+a2=7,S2+a3=15,证明:对于任意n∈N*,都有:$\frac{1}{{{S_1}+1}}+\frac{1}{{{S_2}+2}}+\frac{1}{{{S_3}+3}}+…+\frac{1}{{{S_n}+n}}<\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在正方体ABCD-A1B1C1D1中,若AD的中点为M,DD1的中点为N,则异面直线MN与BD所成角的大小是60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知四棱锥P-ABCD,侧面PAD是正三角形,底面ABCD是菱形,∠BAD=60°,设平面PAD∩平面PBC=l.
(Ⅰ)求证:l∥平面ABCD;
(Ⅱ)求证:PB⊥BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,等腰梯形ABCD中,AB∥CD,AD⊥BD,矩形ABEF所在的平面和平面ABCD相互垂直. 
(1)求证:AD⊥平面DBE;
(2)若AB=2,AD=AF=1,求三棱锥C-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在x轴上,记△BCF的面积为S1,△ACF的面积为S2,则$\frac{{S}_{1}^{2}}{{S}_{2}^{2}}$等于是(  )
A.$\frac{{|{BF}|-1}}{{|{AF}|-1}}$B.$\frac{{{{|{BF}|}^2}-1}}{{{{|{AF}|}^2}-1}}$C.$\frac{{|{BF}|+1}}{{|{AF}|+1}}$D.$\frac{{{{|{BF}|}^2}+1}}{{{{|{AF}|}^2}+1}}$

查看答案和解析>>

同步练习册答案