精英家教网 > 高中数学 > 题目详情
已知a、b、c∈R+,且a+b+c=1.求证:(1+a)(1+b)(1+c)≥8(1-a)(1-b)(1-c).
分析:应用分析法证明.将待证式中的:“1”用a+b+c代换,再结合基本不等式进行放缩,最后利用不等式的基本性质即可.
解答:证明:∵a、b、c∈R+且a+b+c=1,
∴要证原不等式成立,
即证[(a+b+c)+a]•[(a+b+c)+b][(a+b+c)+c]≥8[(a+b+c)-a]•[(a+b+c)-b]•[(a+b+c)-c].
也就是证[(a+b)+(c+a)][(a+b)+(b+c)]•[(c+a)+(b+c)]≥8(b+c)(c+a)(a+b).①
∵(a+b)+(b+c)≥2
(a+b)(b+c)
>0,
(b+c)+(c+a)≥2
(b+c)(c+a)
>0,
(c+a)+(a+b)≥2
(c+a)(a+b)
>0,
三式相乘得①式成立.
故原不等式得证.
点评:从求证的不等式出发,逐步分析寻求使这个不等式成立的充分条件,直至所需条件为已知条件或一个明显成立的事实,从而得出要证的不等式成立,这种执果所因的思考和证明方法叫做分析法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

50、已知a,b,c∈R,证明:a2+4b2+9c2≥2ab+3ac+6bc.

查看答案和解析>>

科目:高中数学 来源: 题型:

证明:
(1)已知x,y都是正实数,求证:x3+y3≥x2y+xy2
(2)已知a,b,c∈R+,且a+b+c=1,求证:a2+b2+c2 ≥ 
13

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c∈R+且满足a+2b+3c=1,则
1
a
+
1
2b
+
1
3c
的最小值为
9
9

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知a,b,c∈R,且a+b+c=1,求证:a2+b2+c2
1
3

(2)a,b,c为互不相等的正数,且abc=1,求证:
1
a
+
1
b
+
1
c
a
+
b
+
c

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c∈R,且a>b,那么下列不等式中成立的是(  )

查看答案和解析>>

同步练习册答案