【题目】如图,已知直线与抛物线相交于两点,为坐标原点,直线与轴相交于点,且.
(1)求证:;
(2)求点的横坐标;
(3)过点分别作抛物线的切线,两条切线交于点,求.
科目:高中数学 来源: 题型:
【题目】某班共有学生45人,其中女生18人,现用分层抽样的方法,从男、女学生中各抽取若干学生进行演讲比赛,有关数据见下表(单位:人)
性别 | 学生人数 | 抽取人数 |
女生 | 18 | |
男生 | 3 |
(1)求和;
(2)若从抽取的学生中再选2人做专题演讲,求这2人都是男生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为坐标原点,圆,定点,点是圆上一动点,线段的垂直平分线交圆的半径于点,点的轨迹为.
(1)求曲线的方程;
(2)已知点是曲线上但不在坐标轴上的任意一点,曲线与轴的焦点分别为,直线和分别与轴相交于两点,请问线段长之积是否为定值?如果还请求出定值,如果不是请说明理由;
(3)在(2)的条件下,若点坐标为(-1,0),设过点的直线与相交于两点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设(e为自然对数的底数),.
(I)记.
(i)讨论函数单调性;
(ii)证明当时,恒成立
(II)令,设函数G(x)有两个零点,求参数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修:坐标系与参数方程
在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系.曲线的极坐标方程为.
(1)写出的普通方程和的直角坐标方程;
(2)设点在上,点在上,求的最小值及此时点的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场在“五一”促销活动中,为了了解消费额在5千元以下(含5千元)的顾客的消费分布情况,从这些顾客中随机抽取了100位顾客的消费数据(单位:千元),按,,,,分成5组,制成了如图所示的频率分布直方图现采用分层抽样的方法从和两组顾客中抽取4人进行满意度调查,再从这4人中随机抽取2人作为幸运顾客,求所抽取的2位幸运顾客都来自组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,其中.
(1)当时,求函数单调递增区间;
(2)求证:对任意,函数的图象在点处的切线恒过定点;
(3)是否存在实数的值,使得在上有最大值或最小值,若存在,求出实数的取值范围;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com